CMRIT LIBRARY

Third Semester B.E. Degree Examination, June/July 2018 Logic Design

Max. Marks:100 Time: 3 hrs.

> Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

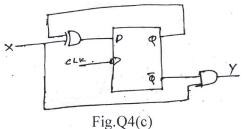
- Define (i) period, (ii) frequency and (iii) duty cycle of a digital signal. The waveform has a 1 frequency of 5 MHz and width of positive pulse is 0.05 µs. What is the high duty cycle and (06 Marks) low duty cycle?
 - (04 Marks) What are universal gates? Realize the basic gates using NOR gates only.
 - What is the purpose of using an expander, with an AND-OR-INVERT gate? Write a logic circuit of an expander driving expandable AND-OR-INVERT gate. (05 Marks)
 - What are the three different models for writing a module body in verilog HDL? Explain the (05 Marks) structure of verilog module.
- Use k-map to simplify the following Boolean expression and give the implementation of the same using NOR gates only (pos form):

$$F(A, B, C, D) = \Sigma m(0, 1, 2, 4, 5, 12, 14) + d(8, 10)$$
 (08 Marks)

Simplify the following Boolean expression using Quine-Meclusky method b.

$$F(A, B, C, D) = \Sigma m(1, 2, 8, 9, 10, 12, 13, 14)$$
 (08 Marks)

- What are static hazards? Explain with an example to design a hazard free circuit. (04 Marks)
- Implement the following Boolean expression using a 4:1 multiplexer and external gates, 3 Take 'AB' as input to multiplexer selection lines and CD as map entered variables (input variables).


$$F(A, B, C, D) = \sum m(6, 7, 9, 10, 13) + d(1, 4, 5, 11)$$
 (06 Marks)

Implement the following Boolean functions using PEA:

$$f_1(a, b, c) = \sum m(0, 1, 3, 4)$$

 $f_2(a, b, c) = \sum m(1, 2, 3, 4, 5)$

$$f_2(a, b, c) = \sum m(1, 2, 3, 4, 5)$$
 (06 Marks)
a 1-bit comparator. (04 Marks)

- Design a 1-bit comparator.
- Write a verilog module for 2:1 multiplexer using if else statement and case statement.
- (04 Marks)
- What is Race around condition? How do you overcome this problem? (06 Marks) Show how a D-flip flop can be converted to SRFF. (06 Marks)
 - Analyze the behavior of the sequential circuit shown in Fig.Q4(c) and draw the state table (08 Marks) and state transition diagram.

PART – B

- 5 a. Explain the different types of shift registers and also explain how the shift registers can be used for counting applications. (10 Marks)
 - b. Discuss with a neat diagram, how the shift register can be used for Serial Addition.

(06 Marks)

- c. Explain with an example, the difference between Blocking assignment statements (=) and non Blocking assignment statements (<=). (04 Marks)
- 6 a. Mention any two differences between asynchronous and synchronous counter, with a neat block diagram, output waveforms and truth table, explain a 3-bit ripple down counter constructed using negative-edge triggered JK flip-flops.

 (10 Marks)

b. Design a self correcting modulo-6 synchronous counter using JK flip-flop as described in state sequence of Fig.Q6(b), in which all the unused state leads to state CBA = 000.

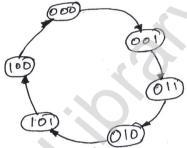


Fig.Q6(b)

(10 Marks)

- 7 a. Compare Moore and Mealy model of synchronous sequential circuit.
- (05 Marks)
- b. Draw the ASM chart for vending machine problem using Mealy model.
- (05 Marks)

- c. Reduce the state transition diagram of Fig.Q7(c) by
 - (i) Row elimination method (ii) Implication Table method.

(10 Marks)

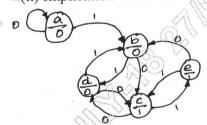


Fig.Q7(c)

- 8 a. What is Binary ladder? Explain the binary ladder with a digital input of 1000. (06 Marks)
 - b. Discuss the working of the following A/D converters:
 - (i) 3 bit simultaneous A/D converter
 - (ii) Continuous A/D converter.

- (10 Marks)
- c. A counter type 8-bit AD converter driven by a 500 kHz clock, find
 - (i) The average conversion time
 - (ii) The maximum conversion rate.

(04 Marks)

CMRIT LIBRARY
BANGALORE - 560 037