Fifth Semester B.E. Degree Examination, June/July 2018 Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part.

2. Assume any missing data, if any.

PART - A

a. Define DFA. Mention the difference between DFA and NFA.

(04 Marks)

- b. Design DFA for the following language over $\Sigma = \{a, b\}$
 - i) The set of strings containing substring abb
 - ii) The set of strings with exactly three a's
 - iii) $L = \{awa \mid w \in (a + b)^*\}.$

(10 Marks)

- c. Design NFA or \in NFA for the following languages
 - i) abe, abd, aacd $\{ \sum = \{a, b, c, d\} \}$
 - (i) $\{ab, abc\}^*$ $\{\sum = \{a, b, c\}\}.$

(06 Marks)

2 (a.) Compute ∈- closure of each state from the following ∈ - NFA:

(04 Marks)

	€	a	b
$\rightarrow p$	{ r }	{ q }	{ p, r }
q	ф	{ p }	ф
r	{ p, q }	{r}	{ p }
*s	{ p }	{p}	{ p }

- b. Define regular expression. Write the regular expression for the following languages:
 - i) $L = \{a^n b^m \mid n \le 4, m \ge 2\}$
 - ii) Strings of 0's and 1's having no two consecutive zeros
 - ii) Strings of 0's and 1's whose lengths are multiples of 3.

(06 Marks)

c. Design an \in -NFA for the regular expression (a + b)*ab.

- (04 Marks)
- d. Obtain a regular expression from the following DFA using state elimination method [Refer Fig.Q2(d)]:

Fig.Q2(d)

(06 Marks)

3 a. State and prove pumping lemma for regular languages.

(08 Marks)

b. Show that the language $L = \{w \mid n_a(w) = n_b(w)\}$ is not regular.

- (04 Marks)
- c. Minimize the following DFA using table filling method [Refer Fig.Q3(c)]

(08 Marks)

Fig.Q3(c)

BANGALORE - 569 037

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

- 4 a. Define CFG. Obtain CFG for the following:
 - i) $L = \{a^n b^{2n} \mid n \ge 0\}$
 - ii) $L = \{a^n b^{n-3} | n \ge 3\}$

iii) For regular expression (a + b).

(07 Marks)

- b. Consider the grammar G with following productions E → +EE | * EE | EE | x | y
 Find LMD, RMD and write parse tree for the string + * xyxy.
- c. What is ambiguous grammar? Show that the following grammar is ambiguous on the string ibtibtaea.

 $S \rightarrow iCtS \mid iCtSeS \mid a$

 $C \rightarrow b$.

(07 Marks)

PART - B

5 a. Define PDA. Describe the language accepted by PDA.

(04 Marks)

- b. Construct a PDA that accepts the language $L = \{a^n \ b^n \mid n \ge 1\}$. Give the graphical representation for PDA obtained. Show the instantaneous description of the PDA on the input string aaabbb. (10 Marks)
- c. Obtain a PDA equivalent to the following grammar:

 $S \rightarrow AS \mid \in$

 $A \rightarrow 0A1 \mid A1 \mid 01$

(06 Marks)

- 6 a. Remove useless symbols from the following grammar:
 - $S \rightarrow aA \mid \beta$
 - $A \rightarrow aA \mid a$
 - $B \rightarrow bB$
 - $D \rightarrow ab \mid Ea$

 $E \rightarrow ac \mid d$.

(08 Marks)

- b. Define CNF. Convert the following CFG to CNF:
 - $E \rightarrow E + E$
 - $E \rightarrow E * E$
 - $E \rightarrow (E)$

 $E \rightarrow id$

(08 Marks)

- c. Prove that context tree languages are closed under union operation. (04 Marks)
- 7 a. Define turing machine. Explain with a diagram, general structure of multitape turing machine. (06 Marks)
 - b. Design a turing machine to accept the language $L = \{0^n \mid 1^n \mid n \ge 1\}$. Write its transition diagram and give instantaneous description for the input 0011. (14 Marks)
- Write short notes on the following:
 - a. Multi tape Turing M/C
 - b. Halting problem of TM
 - c. Recursive language
 - d. Post's correspondence problem.

(20 Marks)