

Sixth Semester B.E. Degree Examination, June/July 2018 Compiler Design

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO full questions from each part.

PART - A

1 a. Explain with a diagram, the phases of compiler.

(08 Marks)

- i) Identifier
- ii) Unsigned number

(06 Marks)

c. Write a program for look ahead code with sentinels.

Write the transition diagram for the following:

(06 Marks)

- 2 a. Define left-recursive grammar. Eliminate left recursion from the following grammar:
 - $E \rightarrow E + T \mid T$
 - $T \rightarrow T * F \mid F$
 - $F \rightarrow (E) \mid id.$

(05 Marks)

- b. Given the grammar
 - $S \rightarrow AaAb \mid BbBa$
 - $A \rightarrow \in$
 - $B \rightarrow \in$
 - i) Compute First () and Follow () functions.
 - ii) Construct predictive parsing table.
 - iii) Parse the input string w = ab.

(09 Marks)

- c. Show that the following grammar is ambiguous E \rightarrow E | E * E | (E) | id, write an equivalent unambiguous grammar for the same. (06 Marks)
- a. What is meant by handle pruning? Construct bottom-up parse tree for the input string W = id * id using the grammar of Q. No. 2(a). (06 Marks)
 - b. Write the rules for First () and Follow () functions.

(06 Marks)

- c. Explain the working of shift reduce parser. Parse the input string id * id. Using the grammar of Q. No. 2(a). (08 Marks)
- 4 a. Write an algorithm to construct SLR parsing table.

(06 Marks)

- b. Construct the parsing table for LR(1) parsing using the grammar.
 - $S \rightarrow CC$
 - $C \rightarrow c C$
 - $c \rightarrow d$

Draw the goto graph for LR (1) items.

(14 Marks)

5 a. Explain the concept of syntax directed definition.

(04 Marks)

b. Consider the context free grammar given below:

 $S \rightarrow EN$

 $E \rightarrow E + T \mid E - T \mid T$

 $T \rightarrow T * F | T | F | F$

 $F \rightarrow (E) \mid digit$

 $N \rightarrow ;$

- i) Obtain SDD for the above grammar.
- ii) Annotated parse tree for the input string 5 * 6 + 7;

(10 Marks)

c. Define:

- i) Synthesized attribute
- ii) Inherited attribute.

(06 Marks)

6 a. Construct DAG and three address code for the following expression:

a + a * (b - c) + (b - c) * d.

(08 Marks)

- b. Explain the following with an example:
 - Quadruples
 - Triples.

(08 Marks)

Generate three address code for the following statement: n = f(a[i]); where a is an integer array and f is a function from integers to integers.

(04 Marks)

a. With a neat diagram, describe the general structure of an activation record.

(06 Marks)

- b. Explain in the strategy for reducing fragmentation in leap memory.
- (08 Marks)
- c. Explain briefly the performance metrics to be considered while designing a garbage collector. (06 Marks)
- 8 a. Discuss the various issues in the design of a code generator,

(10 Marks)

- b. What are basic blocks and flow graphs? Write an algorithm to partition the three address instructions into basic blocks. (06 Marks)
- c. Explain code optimization methods:
 - i) Local common subexpressions
 - ii) Dead code elimination.

(04 Marks)

COIREY LIBRARY