

USN

15CS32

Third Semester B.E. Degree Examination, June/July 2019 Analog and Digital Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain with help of a circuit diagram and characteristic curves working of N-channel Enhancement MOSFET (E-MOSFET) (10 Marks)
 - b. Explain any two applications of field Effect Transistor (FET) along with the circuit diagram.
 (06 Marks)

OR

2 a. Explain the operation of Astable multi-vibrator with a neat diagram.

(08 Marks) (08 Marks)

b. Explain performance parameters of operational amplifiers.

Module-2

3 a. Describe positive and negative logic. list the equivalences between them.

(04 Marks)

b. Simplify the following boolean function using k-map method.

 $F(A, B, C, D) = \pi M (0, 1, 2, 4, 5, 10) + d(8, 9, 11, 12, 13, 15)$ Get the simplified POS form of k-map.

(04 Marks)

c. What is a Hazard? Explain Static – 0 hazard and its Hazard cover.

(08 Marks)

OR

- 4 a. Give simplified logic equation using Quine-McClusky method for the following Boolean function $F(A, B, C, D) = \sum m(0, 3, 5, 6, 7, 11, 14)$. (12 Marks)
 - b. Mention the different verilog HDL model and write the verilog HDL code using structural model for the circuit given in Fig Q4(b)

Fig Q4(b)

(04 Marks)

Module-3

5 a. Implement the following function using 8:1 multiplexer

 $F(A, B, C, D) = \sum m(0, 1, 5, 6, 8, 10, 12, 15)$

(06 Marks)

b. Show that using a 3:8 decoder and multi-input OR gate, the following boolean expression can be realized $F_1(A, B, C) = \sum m(0, 4, 6)$

 $F_2 = (A, B, C) = \sum m (1, 2, 3, 7)$

(04 Marks)

c. Design even parity generator.

(06 Marks)

OR

Design seven segment decoder using Programmable Logic Array (PLA) (08 Marks) What is Magnitude comparator? Design one bit comparator using basic gates? (08 Marks)

Module-4

- Explain the working of a JK master slave Flip Flop along with its implementation using (08 Marks) NAND gates. (08 Marks)
 - Draw the state transition tables of JK, T, D and SR Flip Flops.

OR

- Explain a 4-bit serial In Serial out (SISO) registers using negative edge triggered D-8 Flip-Flops. Draw the waveform to shift binary number 1111 into this register. (08 Marks)
 - Write the comparison between synchronous and asynchronous counter. (04 Marks) b.
 - Explain Ring counter with a neat diagram.

Module-5

- Define counter. Design and Implement a MOD 5 synchronous counter using JK Flip-Flop. 9 (10 Marks)
 - With a neat diagram explain Digital clock. b.

(06 Marks)

(04 Marks)

10 Explain 2 bit simultaneous A/D converter. (10 Marks)

Explain the Binary ladder with digital input of 0100.

(06 Marks)