Fifth Semester B.E. Degree Examination, June/July 2019 Automata Theory and Computability

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the following: i) string ii) alphabet iii) language.
 - b. Design a deterministic finite state machine for the following language over $\sum = \{a, b\}$.
 - i) $L = \{W \mid | W \mid \text{mod } 3 > |W| \text{ mod } 2 \}$
 - ii) $L = \{w \mid W \text{ ends either with ab or ba}\}.$

(10 Marks)

(06 Marks)

OR

2 a. Write a note on finite state transducers.

(07 Marks)

b. Define DFSM? Minimize the following FSM. [Refer Fig.Q2(b)]

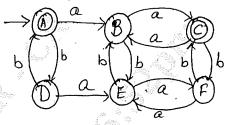


Fig.Q2(b)

(09 Marks)

3 a. Write the equivalent Regular Expression for the given Finite state machine.

[Refer Fig.Q3(a)] (08 Marks)

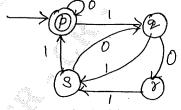


Fig Q3(a)

- b. Write the Regular Expression for the following language.
 - i) $\{w \in \{a, b\}^* \text{ with atmost one a}\}$
 - ii) $\{w \in \{a, b\}^* \text{ does not end with ba}\}$
 - iii) $\{w \in \{0, 1\}^* \text{ has substring } 001\}$
 - iv) $\{w \in \{0, 1\}^* | W | \text{ is even} \}.$

(08 Marks)

OR

4 a. State and prove the pumping theorem for regular language.

(08 Marks)

b. Show that the language $L = \{a^n b^n \mid n \ge 0\}$ is not regular.

(08 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-3

5 a. Define grammar. Write the CFG for the following language.

i) $L = \{ w \in \{a, b\}^* \mid n_a(w) = n_b(w) \}$

ii) $L = \left\{ a^i b^j \mid i = j+1 \right\}$. (08 Marks) What is inherent ambiguity? Show that the language given is inherently amtriguous?

b. What is inherent ambiguity? Show that the language given is inherently amtriguous? $L = \left\{ a^n b^n c^m \mid n, m \ge 0 \right\} \cup \left\{ a^n b^m c^n \mid n, m \ge 0 \right\}. \tag{08 Marks}$

ΛR

- 6 a. Define PDA? Design PDA for the language $L = \{a^n b^m a^n \mid n, m \ge 0 \}$. (06 Marks)
 - b. Convert the following language from CFG to PDA $L = \{ww^R \mid w \in \{0, 1\}^*\}$. (06 Marks)
 - c. Convert the following CFG to CNF $E \rightarrow E + E \mid E * E \mid (E) \mid id$. (04 Marks)

Module-4

- 7 a. Prove that the language $L = \left\{ a^n b^n c^n \mid n \ge 0 \right\}$ is not context free. (08 Marks)
 - b. Prove that CFL are not closed under intersection, complement or difference? (08 Marks)

OR

- 8 a. Design a Turing machine to accept $L = \{a^n b^n c^n \mid n \ge 0\}$. (08 Marks) b. Define a turning machine. Explain the working of a turning machine. (05 Marks)
 - c. Write a note on multitape machine. (03 Marks)

Module-5

- 9 Write a short notes on:
 a. Growth rate of function (05 Marks)
 - b. Church-turning thesis

 CMRT LIBRARY

 (06 Marks)
 - Linear bounded automata.

 BANGALORE 560 037 (05 Marks)

OR

- Write a short notes on:
 - a. Post correspondence problem
 b. Halting problem in turning machine
 (05 Marks)
 (05 Marks)
 - c. Various types of turning machine. (06 Marks)

