| usn / | | | | | | | | | | 10ES34 | |--|------------|-----------------------|---------------|-----------|------------|--------------|------------|----------------------|------------|------------------------------------| | Third Semester B.E. Degree Examination, Dec.2017/Jan.2018 | | | | | | | | | | | | Network Analysis | | | | | | | | | | | | Time: 3 hrs. Marks:100 | | | | | | | | | | | | Note: Answer any FIVE full questions, selecting atleast TWO questions from each part. | | | | | | | | | | | | PART – A | | | | | | | | | | | | 1 a. | Define | the foll | owing to | erms with | n exampl | | A | < | | | | | i) Lui | mped El | ement | ii) A | ctive Ele | ement | iii) Prac | | | (03 Marks) | | b | . Find the | he curre | nt Is usi | ng mesh | analysis | for the c | circuit sh | own in | fig.Q1(b), | if the circuit is (07 Marks) | | operating at frequency 5000 rad/s. (07 Marks) | Fig.Q | 1 <i>(</i> b) | 1 | 10.5 | . BanH | 4,45 | 1002 | | | | | | rig.Q | 1(0) | 46 | 20145 V | | · Di | 1220 | | | | | | | 14.0 | | | | (0)3 | | | | | | | | | | 20-51 | 2 9 | 3) | | XI. | | | C. | | e circuit
nalysis. | shown | in fig. (| 21(c), fi | nd the po | wer deli | vered by | y depende | ent source using (06 Marks) | | | noue a | marysis. | | | | | 4-3 | , | | (00 1/20115) | | | | | | | 1 30 | 122 | 4,2 | | | | | | | | Fig.Q | 1(c) | 1 | 5 6 | 多 | | | | | | | | | | W | ♠ 61, | - Pan | | | | | a | Eind t | aa raajat | nnoo D | for the | network | shown in | fig Old | osino A | - Y conve | ersion | | d. Find the resistance R_{AB} for the network shown in fig.Q(d), using Δ - Y conversion. (04 Marks) | | | | | | | | | | | | 1/A 102 | | | | | | | | | | | | | | | < | (D)\ | | 750 | 2 3 10-2 | P. C | 5) | | | | | Fig | g.Q1(d) | | | | 102 | 1 | a | | | | | | 48 | 3) | ¿ | 3102 | -m_ | <i>\</i> , | />>< | | | | | | | J | 3 10- | n_ | 102 | | Command of | | | 2 a | . Define | the follow | owing to | erms with | n examp | le: | | | | | | | i) Gı | aph i | i) Tree | iii) | Co - tree | • | | | | (03 Marks) | | b | . For th | e circuit | in fig.C | (2(b), wr | ite the ti | e – set ma | atrix usin | ıg AB, E
ıısino K | VI, and C | Vor the links of alculate all loop | | | curren | ts and b | ranch vo | ltages. | i cquaiic | ns iii iiiai | III HOIII | asing is | . L and c | (10-Marks) | | | 200 | 1 | | _ | | 52 | | | | 250 | Fig.Q2(b) C c. Draw the oriented graph for the circuit shown in fig.Q2(c). Also find fundamental cut - set schedule using X_{c1} , R_2 and X_{L1} or the twigs of the tree. Find admittance matrix also. (04 Marks) d. Find the dual of the circuit shown in fig.Q2(d). (03 Marks) a. Find V_x using superposition for the circuit shown in fig.Q3(a). 3 (08 Marks) b. Find the voltage V_L across the inductor and verify reciprocity theorem for the circuit shown (06 Marks) in Fig.Q3(b). State and prove Milliman's theorem. (06 Marks) a. Find the Thevenin's equivalent circuit across terminals a & b for the circuit shown in fig.Q4(a). Also find the current I_L using this equivalent circuit. (08 Marks) State and prove Norton's theorem. (05 Marks) Fig.Q4(a) c. Find Z_L for maximum power transfer for the circuit shown in fig.Q4(c). And also find the average maximum power absorbed by Z_L . (07 Marks) 5 a. For the circuit shown in fig.Q5(a), find the transfer function, resonant frequency half power frequencies, bandwidth and Q - factor. (10 Marks) - b. Define the term Q factor. Using this definition find the Q factor of an inductor and a capacitor. (05 Marks) - c. For the network shown in fig.Q5(c), find the value of C for resonance to take place at w = 5000 rad/s. (05 Marks) - 6 a. Write a short note on Initial and Final conditions of circuit elements under switching conditions. (06 Marks) - b. In the circuit shown in fig. Q6(b), the switch S_1 has been open for a long time before closing at t=0. Find $V_c(0^+)$, $i_L(0^+)$, $V_c(\infty)$, $i_L(\infty)$, $\frac{di_L}{dt}(0^+)$ and $\frac{d^2i_L}{dt^2}(0^+)$ (06 Marks) c. For the circuit shown in fig.Q6(c), calculate $i_L(0^+)$ $\frac{di_L(0^+)}{dt}$, $\frac{d}{dt}V_c(0^+)$, $V_R(\infty)$, $V_c(\infty)$ and $i_L(\infty)$