usn /										10ES34
Third Semester B.E. Degree Examination, Dec.2017/Jan.2018										
Network Analysis										
Time: 3 hrs. Marks:100										
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.										
PART – A										
1 a.	Define	the foll	owing to	erms with	n exampl		A	<		
	i) Lui	mped El	ement	ii) A	ctive Ele	ement	iii) Prac			(03 Marks)
b	. Find the	he curre	nt Is usi	ng mesh	analysis	for the c	circuit sh	own in	fig.Q1(b),	if the circuit is (07 Marks)
operating at frequency 5000 rad/s. (07 Marks)										
		Fig.Q	1 <i>(</i> b)	1	10.5	. BanH	4,45	1002		
		rig.Q	1(0)	46	20145 V		· Di	1220		
			14.0				(0)3			
					20-51	2 9	3)		XI.	
C.		e circuit nalysis.	shown	in fig. (21(c), fi	nd the po	wer deli	vered by	y depende	ent source using (06 Marks)
	noue a	marysis.					4-3	,		(00 1/20115)
					1 30	122	4,2			
			Fig.Q	1(c)	1	5 6	多			
					W	♠ 61,	- Pan			
a	Eind t	aa raajat	nnoo D	for the	network	shown in	fig Old	osino A	- Y conve	ersion
d. Find the resistance R_{AB} for the network shown in fig.Q(d), using Δ - Y conversion. (04 Marks)										
1/A 102										
			<	(D)\		750	2 3 10-2	P. C	5)	
		Fig	g.Q1(d)				102	1	a	
			48	3)	¿	3102	-m_	<i>\</i> ,	/>><	
				J	3 10-	n_	102		Command of	
2 a	. Define	the follow	owing to	erms with	n examp	le:				
	i) Gı	aph i	i) Tree	iii)	Co - tree	•				(03 Marks)
b	. For th	e circuit	in fig.C	(2(b), wr	ite the ti	e – set ma	atrix usin	ıg AB, E ıısino K	VI, and C	Vor the links of alculate all loop
	curren	ts and b	ranch vo	ltages.	i cquaiic	ns iii iiiai	III HOIII	asing is	. L and c	(10-Marks)
	200	1		_		52				250

Fig.Q2(b)

C

c. Draw the oriented graph for the circuit shown in fig.Q2(c). Also find fundamental cut - set schedule using X_{c1} , R_2 and X_{L1} or the twigs of the tree. Find admittance matrix also.

(04 Marks)

d. Find the dual of the circuit shown in fig.Q2(d).

(03 Marks)

a. Find V_x using superposition for the circuit shown in fig.Q3(a). 3

(08 Marks)

b. Find the voltage V_L across the inductor and verify reciprocity theorem for the circuit shown (06 Marks) in Fig.Q3(b).

State and prove Milliman's theorem.

(06 Marks)

a. Find the Thevenin's equivalent circuit across terminals a & b for the circuit shown in fig.Q4(a). Also find the current I_L using this equivalent circuit. (08 Marks)

State and prove Norton's theorem.

(05 Marks)

Fig.Q4(a)

c. Find Z_L for maximum power transfer for the circuit shown in fig.Q4(c). And also find the average maximum power absorbed by Z_L . (07 Marks)

5 a. For the circuit shown in fig.Q5(a), find the transfer function, resonant frequency half power frequencies, bandwidth and Q - factor. (10 Marks)

- b. Define the term Q factor. Using this definition find the Q factor of an inductor and a capacitor. (05 Marks)
- c. For the network shown in fig.Q5(c), find the value of C for resonance to take place at w = 5000 rad/s. (05 Marks)

- 6 a. Write a short note on Initial and Final conditions of circuit elements under switching conditions. (06 Marks)
 - b. In the circuit shown in fig. Q6(b), the switch S_1 has been open for a long time before closing at t=0. Find $V_c(0^+)$, $i_L(0^+)$, $V_c(\infty)$, $i_L(\infty)$, $\frac{di_L}{dt}(0^+)$ and $\frac{d^2i_L}{dt^2}(0^+)$ (06 Marks)

c. For the circuit shown in fig.Q6(c), calculate $i_L(0^+)$ $\frac{di_L(0^+)}{dt}$, $\frac{d}{dt}V_c(0^+)$, $V_R(\infty)$, $V_c(\infty)$ and $i_L(\infty)$

