## CBCS SCHEME

| CMRIT LIBRARY BANGALORE - 560 037 |
|-----------------------------------|
|                                   |

15EE34

# Third Semester B.E. Degree Examination, June/July 2018 Analog Electronic Circuits

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

#### Module-1

- I a. Derive an expression for  $E_{Th}$ ,  $I_B$  and  $V_{CE}$  for voltage divider bias circuit using exact analysis. (08 Marks)
  - b. For the emitter bias network of Fig.Q1(b), determine the following parameters:

(i)  $I_B$  (ii)  $I_C$  (iii)  $V_{CE}$  (iv)  $V_C$  (v)  $V_E$  (vi)  $V_B$  (vii)  $V_{BC}$ 

(08 Marks)

(06 Marks)



#### OR

- 2 a. Derive the expression for stability factor for fixed bias circuit with respect to  $l_{CO}$ ,  $V_{BE}$  and  $\beta$ .

  (10 Marks)
  - b. With a neat circuit diagram explain the operation of self bias circuit.

### Module-2

- a. With the help of re equivalent model, derive an equation for input impedance, output impedance and voltage gain for an emitter follower configuration. (08 Marks)
  - b. For the collector feedback configuration having  $R_F = 180 \text{ k}\Omega$ ,  $R_C = 2.7 \text{ k}\Omega$ ,  $C_1 = 10 \text{ }\mu\text{F}$ ,  $C_2 = 10 \text{ }\mu\text{F}$ ,  $\beta = 200$ ,  $r_0 = \infty \Omega$  and  $V_{CC} = 9$  volts, determine the following parameters: (i)  $r_e$  (ii)  $Z_i$  (iii)  $Z_o$  (iv)  $A_V$  (08 Marks)

OR

4 a. High frequency response BJT Amplifier has the following parameters:

$$\begin{split} R_S &= 1 \ k \Omega, \quad R_1 = 40 \ k \Omega, \quad R_2 = 10 \ k \Omega, \quad R_E = 2 \ k \Omega, \quad R_C = 4 \ k \Omega, \quad R_L = 2.2 \ k \Omega, \\ C_S &= 10 \ \mu F, \quad C_C = 1 \ \mu F, \quad C_E = 20 \ \mu F, \quad \beta = 100, \quad r_e = 15.76 \ \Omega, \quad R_i = 1.32 \ k \Omega, \\ A_{Vmid}(Amplifier) &= -90 \ , \quad r_o = \infty \ \Omega, \quad V_{CC} = 20 \ V, \quad C_{be} = 36 \ pF, \quad C_{bc} = 4 \ pF, \quad C_{ce} = 1 \ pF, \end{split}$$

 $C_{wi} = 6 pF$ ,  $C_{wo} = 8 pF$ 

(i) Determine  $f_{Hi}$  and  $f_{Ho}$  (ii) Determine  $f_{\beta}$  and  $f_{T}$ 

(08 Marks)

b. Derive equations for Miller input capacitance and Miller output capacitance

(08 Marks)

### Module-3

5 a. Derive expressions for  $Z_i$  and  $A_i$  for a Darlington emitter follower circuit. (10 Marks)

b. Explain the need of a cascading amplifier? Draw and explain the block diagram of two stage cascade amplifier. (06 Marks)

(04 Marks)

## CMRIT LIBRARY BANGALORE - 560 037 OR

6 a. List the general characteristics of negative feedback amplifiers.

Determine the voltage gain, input impedance and output impedance with feedback for voltage series feedback amplifier having A=-100,  $R_i=10~k\Omega$ ,  $R_o=20~k\Omega$  for feedback of (i)  $\beta=-0.1$  and (ii)  $\beta=-0.5$ .

c. For a current series feedback amplifier, derive an expression for output impedance with feedback. (06 Marks)

Module-4

7 a. With a neat circuit and waveforms, explain the operation of a transformer coupled class-A power amplifier. (08 Marks)

b. Show that maximum efficiency of class-B push pull power amplifier circuit is 78.54%.

(08 Marks)

#### OR

8 a. With a neat circuit diagram and waveform explain the operation of RC phase shift oscillator using BJT. Write the expression for frequency of oscillation. (08 Marks)

b. With a neat circuit diagram and waveform, explain the working principle of crystal oscillator operating in series resonant mode. A crystal has the following parameters: L = 0.334 H, C = 0.065 PF and R = 5.5 k $\Omega$ . Calculate the resonant frequency. (08 Marks)

## Module-5

9 a. Derive the expression for  $A_v$ ,  $Z_v$  and  $\overline{Z_o}$  for a JFET common source amplifier with fixed bias configuration. (08 Marks)

b. For a self bias JFET circuit,  $V_{DD}=+12V$ ,  $R_D=2.2~k\Omega$ ,  $R_G=1~m\Omega$ ,  $R_S=1~k\Omega$ ,  $I_{DSS}=8mA$ ,  $V_P=-4$  volts. Determine the following parameters:

(i)  $V_{GS}$ 

(ii) I<sub>D</sub>

(iii) V<sub>DS</sub>

(iv) V<sub>S</sub>

 $(v) V_G$ 

V. Gar

(08 Marks)

#### OR

10 a. Derive expression for  $V_{GS}$ ,  $I_D$ ,  $V_{DS}$ ,  $V_D$  and  $V_S$  for a voltage divider bias circuit using FET. (08 Marks)

b. With neat sketches, explain the basic operation and characteristics of n-channel depletion type MOSFET. (08 Marks)

CMRIT LIBRARY
BANGALORE - 560 037