CMRIT LIBRARY

Seventh Semester B.E. Degree Examination, June/July 2018 VLSI Circuits and Design

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Explain in detail, the process of n-MOS fabrication with the help of necessary fabrication structures. (10 Marks)
 - b. Discuss Moore's law. Explain the working of enhancement mode of transistor with different values of V_{ds}.

 (10 Marks)
- 2 a. Derive an expression for I_{ds} for both saturated as well as non saturated region. (10 Marks)
 - b. Define Zpu/Zpd. Show that pull up to pull down ratio for nMOS inverter driven through one or more pass transistor is 8:1. (10 Marks)
- 3 a. Draw the monochrome stick diagram of n-MOS shift register cell. (06 Marks)
 - Define stick diagram. Explain the encoding used for simple n-MOS process. (06 Marks)
 - c. What are the advantages of complementary transistor pull-up for an inverter? With relevant diagram, explain the CMOS inverter operation in different region. (08 Marks)
- 4 a. Define sheet resistance, square capacitance and delay unit, explain it same for different technologies. (06 Marks)
 - b. Estimate CMOS inverter delay interms of rise time and fall time. (06 Marks)
 - c. Calculate the total capacitance in picofarads between the substrate and structure as shown in Fig. Q4 (c) for Lambda = 5 µm. Use standard values. (08 Marks)

Fig. Q4 (c)

PART - B

- 5 a. Derive the scaling factors for the following device parameter by considering constant electric field scaling model:
 - (i) Gate capacitance
 - (ii) Maximum operating frequency
 - (iii) Current density.
 - (iv) Channel resistance.

(v) Power dissipation per gate P_g. (10 Marks)

b. Discuss in detail the limitation of scaling and limits due to subthreshold currents. (10 Marks)

CMAIT LIBRARY BANGALORE - 560 637 1 of 2

CMRIT LIBRARY BANGALORE - 560 037

10EE764

6 a. Write the structure and stick diagram of nMOS, CMOS 2 I/P nand gates. (06 Marks)

b. Prove that for pseudo nMOS logic $Zpu/Zpd = \frac{3}{2}$

(06 Marks)

c. Write note on:

(i) General logic function block.

(ii) Multiplexer.

(08 Marks)

7 a. Explain the design of 4-bit shifter.

(10 Marks)

b. Define regularity. Explain the design of an ALU subsystem.

(10 Marks)

Write short notes on:

a. Some general consideration in subsystem design processes.

b. Dynamic shift register.

c. Dynamic CMOS logic.

d. Gray code to binary code converter.

(20 Marks)

MAIT LIBRARY