10EE71

.

Seventh Semester B.E. Degree Examination, June/July 2018 Computer Techniques in Power System Analysis

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting atleast TWO questions from each part.

2. Missing data, if any, may suitably be assumed.

PART - A

- a. With the help of a typical one line diagram, define the basic terms associated with graph theory. (10 Marks)
 - b. For the tree shown in Fig.Q1(b), form the basic cut set matrix B and basic loop incidence matrix C and hence determine C^tB. (10 Marks)

Fig.Q1(b)

a. With the usual notations, derive the equation:

 $Y_{BUS} = A^t [y] A.$

(06 Marks)

b. The primitive admittances of the lines are shown in the Fig.Q2(b). Taking ground as reference, form Y_{BUS} by Direct inspection method.

Fig.Q2(b)

Bus 3 has a transformer in the line 3-4 with off - nominal turns ratio 1.04. (06 Marks)

c. The p.u. impedances of the lines are shown in the Fig.Q2(c). Determine Z_{Bus} by Building Algorithm technique. Take the elements in the order: 0-1, 1-2, 0-2.

(08 Marks)

1 of 3

CMRIT LIBRARY BANGALORE - 569 037

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

CMRIT LIBRARY BANGALORE - 560 037

- 3 a. Give the algorithm for GS method of load flow analysis for power system having both PQ and PV buses. (10 Marks)
 - b. The input data for a 3 bus system is as follows:

	1	2	(1) D
$Y_{Bus} = \bigcirc$	-20.834j	4.167j	16.667j
2	4.167j	-9.723j	5.556j
3	16.667j	5.556j	-22.223j

Given:

Acceleration factor, $\alpha = 1.4$

D		Net Power, p.u.	
Bus	Voltage, p.u.	P	Q
1 (Slack)	1.05 + j0	-	=
2 (PQ bus)	-	- 0.3	- 0.2
3 (PQ bus)	-	- 0.6	- 0.25

Using GS iterative method, find bus voltages and slack bus power at the end of first iteration. (10 Marks)

- 4 a. Draw the flow chart for Newton-Raphson method of Load Flow analysis for power system with PO buses.
 - b. For a 3 bus system the following data is given:

	1	2	3
$Y_{Bus} =$	15 - 90°	10 <u> </u> 90°	5 <u>90°</u>
	10 <u>90°</u>	15 <u>-90°</u>	5 90°
	5 90°	5 <u>90°</u>	10[-90%)

Bus	Т	Voltage, Net P		ower
No.	Type	p.u.	P p.u.	Q p.u.
1	Slack	1 + j0	-	(O)
2	PV bus	1.1 + j0	5.3217	W.
3	PQ bus	1 + j0	- 3.6392	-0.534

Determine the elements of the sub-matrices J₁ & J₄ of the Jacobian matrix J of NR load flow

equation :
$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta \mid V \mid \end{bmatrix}$$

(10 Marks)

PART – B

- 5 a. With the help of neat figures, explain the performance curves of generating unit. (12 Marks)
 - b. Given $\frac{dC_1}{dP_1} = 0.2P_1 + 40$ Rs/MWhr; $\frac{dC_2}{dP_2} = 0.25P_2 + 30$ Rs/MWhr.
 - (i) How is the total load of 150 MW distributed for economic operation? Find λ .
 - (ii) If the load is shared equally find the net increase in operating cost. (08

(08 Marks)

- b. Write the algorithm for economic load scheduling using iterative method.
- (08 Marks)
- 7 a. Drive swing equation in terms of machine constant m as well as machine constant H. (08 Marks)
 - b. With the help of diagrams showing the approximations used in the incremental calculations of P_a , ω and δ , give the procedure for first iteration of point by point method. (12 Marks)
- 8 a. Draw the flow-chart for modified Euler's method of solving swing equation. (12 Marks)
 - b. Explain representation of power system for transient stability studies. Give the assumptions made for the same. (08 Marks)

CMRIT LIBRARY