

Fifth Semester B.E. Degree Examination, June/July 2019 Signals and Systems

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART – A

- 1 Explain the following:
 - i) Deterministic and random signals
 - ii) Energy and power signals.

(10 Marks)

(05 Marks)

b. Prove that if x(a) is an odd signal, then

$$\sum_{n=\infty}^{\infty} x(a) = 0$$

c. Verify whether the system

 $y(t) = e^{x(t)}$ is time invariant, linear, memory, stable and causal.

(05 Marks)

- The impulse response h(n) of a discrete time LTI system is given by $h(n) = \{1, 3, 2, -1, 1\}$ and the input
 - x(a) = u(n) u(n-3). Determine the system output y(n). Sketch y(n) Vs n. Also, verify results of convolution. (05 Marks)
 - b. For a discrete LTI system, the input. $x(n) = \alpha^n$, u(n) and h(n) = u(n). Calculate and plot the output signal y(a). (10 Marks)
 - Show that convolution satisfies distributive property.

(05 Marks)

- Consider a LTI system with unit impulse response $h(t) = e^{-t}$, u(t) and the input $x(t) = e^{-3t} \{u(t) - u(t-2)\}$. Determine the output y(t) and draw y(t) vs t.
 - b. Determine the complete response of system described by the difference equation. :

$$y(n) - \frac{1}{9}y(n-2) = x(n-1)$$

if
$$y(-1) = 1$$
, $y(-2) = 0$ and $x(n) = u(n)$.

Use the conventional method.

(10 Marks)

- a. With respect to DTFS, state and prove the following properties:
 - i) Convolution ii) Modulation.

(10 Marks)

(05 Marks)

- b. Determine the Fourier series representation for the signal $x(t) = \cos 4t + \sin 8t$. (05 Marks)
- The periodic signal x(t) is given by e^{-t} and period T = 2 seconds. Determine the Fourier coefficients for $-1 \le t \le 1$. (05 Marks)

PART - B

- a. State and prove Parseval's theorem as applied to Fourier Transform. 5
 - Calculate the Fourier transform of $x(t) = e^{-a|t|}$, were a > 0. Draw its spectrum. b. (05 Marks)
 - Determine the signal x(n) if

$$x(jw) = \frac{5jw + 12}{(jw)^2 + 5jw + 6}.$$
 (05 Marks)

d. Calculate the Fourier transform if

$$x(t) = \sum_{k=0}^{\infty} \alpha^{k} \delta(t - KT) \text{ where } |\alpha| < |$$
 (05 Marks)

- 6 a. Determine the DTFT of following:
 - i) $x(n) = 2^n \cdot u(-n)$

ii)
$$x(n) = \left(\frac{1}{4}\right)^n \cdot u(n+4)$$
 (10 Marks)

b. The impulse response of a continuous time LTI system is given by

$$h(t) = \frac{1}{RC} \cdot e^{-t/RC} \cdot u(t).$$

Determine the frequency response and draw its magnitude and phase response. (10 Marks)

7 a. Determine the z - transform of

i)
$$x(n) = -u(-n-1) + \left(\frac{1}{2}\right)^n \cdot u(n)$$

ii)
$$x(n) = \alpha^{|n|}$$

Specify its ROC. (10 Marks)

b. Using appropriate properties, determine z-transform of

$$x(n) = n^2 \left(\frac{1}{2}\right)^n u(n-3). \text{ What is its ROC?}$$
 (10 Marks)

8 a. Determine the inverse z-transform for

$$x(z) = \frac{z^3 + z^2 + \frac{3}{2z} + \frac{1}{2}}{z^3 + \frac{3}{2}z^2 + \frac{1}{2z}}$$

If ROC: $|z| < \frac{1}{2}$, use partial fraction expansion method.

EANGALORE - 560 037 (10 Marks

- b. Determine the impulse response h(n) for a causal LTI system if the input $x(n) = \left(\frac{1}{2}\right)^n u(n) \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} \cdot u(n-1)$ and its output $y(n) = \left(\frac{1}{3}\right)^n u(n)$. Use z- transform
- approach. (05 Marks) c. Determine the unilateral z-transform for y(n) = x(n-2), if $x(n) = \alpha^n$. (05 Marks)

* * * * *