

Seventh Semester B.E. Degree Examination, June/July 2019

VLSI Circuits and Design

Max. Marks:100

Note: Answer any FIVE full questions, selecting

Note: Answer any FIVE Jun questions, selecting					
at least TWO questions from each part.					
		PART - A			
1	a.	With a neat diagram, explain the working of basic nMOS enhancement mode trans	sistor.		
	u.	The tribut diagram, emplain the general services	(08 Marks)		
	b.	Explain with neat diagrams the process of fabrication of p-well CMOS inverter.	(08 Marks)		
	c.	Explain the procedure used for production of e-beam mask.	(04 Marks)		
2	a.	Derive an expression for pull-up to pull down ratio for an nMOS inverter driven the	nrough one		
-		or more transistors and hence find the typical value for it.	(08 Marks)		
	b.	Explain latch-up in CMOS circuits with relevant diagrams and waveforms.	(07 Marks)		
	c.	An nMOS transistor has L = 2 μ m, W = 20 μ m and $\mu_n C_o$ = 90 μ A/V ² , V_{tt}	$_{1} = 0.5 \text{ V}.$		
	٠.	Determine drain to source current for $V_{gs} = 3.3 \text{ V}$, $V_{ds} = 2V$.	(05 Marks)		
		Determine drain to be dree estroller (gs = 1, 1, 1, us = 1,	,		
3	a.	Explain Lambda (λ) based design rules as applicable to wires and transi	istors with		
3	a.	appropriate diagrams.	(08 Marks)		
	b.	Draw the circuit symbol and stick diagrams for CMOS inverter.	(06 Marks)		
	c.	Draw the stick diagram and layout for nMOs shift register cell.	(06 Marks)		
	C.	Draw the stick diagram and layout for invior sinit register con.	(001.1.1.1)		
4	0	What is sheet resistance? Calculate sheet resistance of transistor channel if $L = 8$	$\lambda W = 2\lambda$		
4	a.		(04 Marks)		
	1	if n-transistor channel $R_s = 10^4 \Omega/\text{square}$.			
	b.	With schematic diagrams, explain inverting and non-inverting super buffers.	(06 Marks)		
	C.	Explain three different kinds of wiring capacitances.	(05 Marks)		
	d.	Briefly explain BiCMOS drivers,	(05 Marks)		
		DADT D.			

5	a.	Derive scaling factor for any 10 device parameters.	(10 Marks)
	1.	Discuss the limitations of goaling on interconnect and contact resistance	(10 Marks)

b. Discuss the limitations of scaling on interconnect and contact resistance.

- Draw the symbolic diagram for BiCMOS 2 input NAND gate. (06 Marks)
 - Explain in detail pseudo nMOS logic taking inverter as an example. (06 Marks) b.
 - With block diagram and stick diagram explain the design approach of a parity generator.

(08 Marks)

- Draw and explain combinational circuit to generate 2-phase clocking. (06 Marks) 7 a.
 - Explain pre-charged bus concept with circuit diagrams. (06 Marks) b.
 - Explain the operation of 4×4 cross bar switch with a neat diagram. (08 Marks) c.
- Explain with diagrams and expressions how to implement ALU functions with an adder? 8 a. (10 Marks)
 - Draw the structure of multiplexer based adder logic with stored and buffered sum output (10 Marks) with n switches. CMRIT LIBRARY

BANGALORE - 560 037