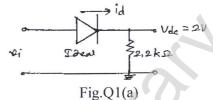
Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Third Semester B.E. Degree Examination, June/July 2018 Analog Electronics Circuits


Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Assuming an ideal diode, sketch v_i, v_d and i_d for half-wave rectifier of Fig.1(a). The input is a sinusoid with frequency 50 Hz. (08 Marks)

b. Determine v_0 for the network shown in Fig.Q1(b).

(06 Marks)

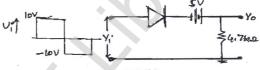
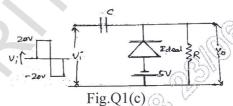
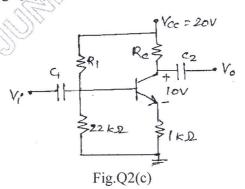



Fig.Q1(b)

c. Sketch v_0 for the network shown in Fig.Q1(c).

(06 Marks)

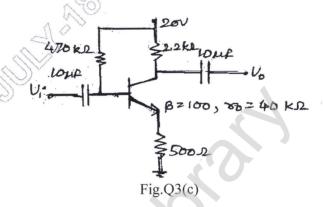


2 a. Using exact analysis, obtain the Q-point values for the voltage-divider bias circuit.

(08 Marks)

(06 Marks)

- b. Obtain the expression for $S(I_{co})$ for an emitter-bias circuit and determine its value for the circuit with $R_B = 470 \text{ k}\Omega$, $R_E = 2.2 \text{k}\Omega$, $R_C = 3.3 \text{k}\Omega$, $V_{CC} = 12 \text{V}$ and $\beta = 100$. (06 Marks)
- c. For the circuit shown in Fig.Q2(c), determine the values for R₁ and R_C.



1 of 3

CMRIT LIDEARY

- 3 a. Derive the equations for Z_i , Z_0 and A_V for fully by passed common emitter RC-coupled amplifier. (08 Marks)
 - b. Compare Z_i, Z₀ and A_V of a RC coupled amplifier with emitter follower and explain why emitter follower is called as impedance matching network. (06 Marks)
 - c. For the circuit shown in Fig.Q3(c), find Z_i , Z_0 and A_V .

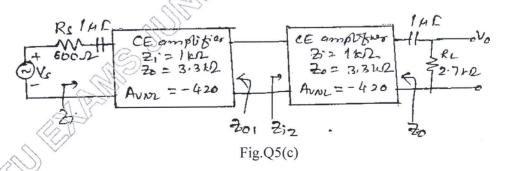
(06 Marks)

- a. Draw the frequency of RC coupled amplifier and explain high-pass action at low frequencies and low-pass action at high frequencies with relevant equations and Bode plots. (08 Marks)
- b. Draw the high frequency equivalent circuit for RC coupled amplifier and obtain expressions for $f_{\rm Hi}$ and $f_{\rm Ho}$. (06 Marks)
- c. Determine $f_{C_{S}}$ and $f_{C_{C}}$ for circuit with,

 $\begin{array}{l} C_S = 10 \mu F, \; C_E = 20 \; \mu F, \; C_C = 1 \; \mu F, \; R_S = 1 k \Omega, \; R_1 = 40 k \Omega, \; R_2 = 10 \; k \Omega, \; R_E = 2 k \Omega, \\ R_C = 4 k \Omega, \; R_L = 2.2 k \Omega, \; \beta = 100, \; r_0 = \infty, \; V_{CC} = 20 V. \end{array} \tag{06 Marks}$

PART - B

5 a. Explain the advantages of employing negative feedback in an amplifier.


(06 Marks)

b. Derive an equation for Z_i and A_V for a Darlington emitter follower.

(08 Marks)

- c. For cascaded stages shown in Fig.Q5(c), determine:
 - i) Loaded gain for each stage
 - ii) Total gain for the system Ay and Avs.

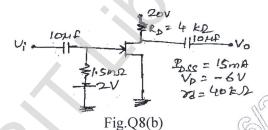
(06 Marks)

2 of 3

CMRIT LIBRARY BANGALORE - 560 037

BANGALORE - 560 037

- Derive the expression for maximum percentage efficiency for a seriesfed class-A power (08 Marks) amplifier.
 - harmonic distortion output waveform with for second Calculate the (06 Marks) $V_{CE_O} = 10V$, $V_{CE_{min}} = 1V$, $V_{CE_{max}} = 18V$.
 - Draw the circuit of a class-B push-pull amplifier and explain the working. Explain why cross-over distortion occurs in class-B and how it is overcome. (06 Marks)
- With a neat circuit diagram, explain the principle of operation of RC phase-shift oscillator (08 Marks) with necessary equations.
 - Explain the working of transistor crystal oscillator in series resonant mode.


(06 Marks)

Design a Weinbridge oscillator for a frequency of 4KHz.

(06 Marks)

- Derive equations for Z_i, Z₀ and A_V for JFET fixed bias configuration, with source resistor 8 (08 Marks) bypassed.
 - For JFET amplifier shown in Fig.Q8(b), find Z_i, Z₀ and A_V.

(08 Marks)

Explain the graphical determination of gm.

(04 Marks)