CMRIT LIBRARY BANGALORE - 560 03

Fourth Semester B.E. Degree Examination, June/July 2018 Fundamentals of HDL

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO full questions from each part.

PART - A

1 a. Explain VHDL and verilog ports.

(07 Marks)

b. Discuss scalar data types in aVHDL.

(08 Marks)

c. Compare VHDL and verilog.

(05 Marks)

- 2 a. List five major differences between signal assignment and variable assignment statements.
 (05 Marks)
 - b. Draw the logic symbol and excitation table of a D-latch. Derive the next state equation and draw the logic diagram. Write verilog code in dataflow description. (10 Marks)
 - c. Explain, with example, how to assign delay time to signal assignment statements in VHDD and verilog. (05 Marks)
- 3 a. Explain process statement in VHDL and always statement in verilog. (08 Marks)
 - b. Write behavioral verilog code for a 8:3 priority encoder.

(06 Marks)

c. Multiply +7 and -5 using Booth's algorithm.

(06 Marks)

- 4 a. Explain with example, i) Binding between library and component in VHDL and ii) Binding between two modules in verilog. (10 Marks)
 - b. Write VHDL structural description of a N-bit magnitude comparator using generate statement (Assume all component descriptions available in work library). (10 Marks)

PART - B

5 a. Explain procedures in VHDL and tasks in verilog.

(06 Marks)

b. Write verilog code to convert an unsigned integer to binary using task.

(06 Marks)

- c. Write VHDL description using function to compute the factorial of a positive integer.
 - (08 Marks)

6 a. Describe packages in VHDL with example.

(06 Marks)

b. Draw the block diagram and write verilog description for a 16×8 SRAM.

(10 Marks)

c. List various built-in procedures and built-in tasks for file-handling.

(04 Marks)

7 a. Develop a block diagram of a 9-bit adder using three 3-bit carry look-ahead adder slices. Describe 3-bit look-ahead adder slice using VHDL and invoke this in verilog module.

(10 Marks)

b. Show through an example of 8:3 priority encoder how to instantiate CASEX in VHDL.

(10 Marks)

- 8 a. What is synthesis? Discuss important facts associated with synthesis. (08 Marks)
 - b. Generate the gate-level synthesis for a signal assignment statement y = 2 * x + 3 and write its structural code in verilog. (12 Marks)

CWRIT LIBRARI
BANGALURE *5%0 037