USN	-	CMRIT LIBRARY	10	EC56
		BANGALORE		

Fifth Semester B.E. Degree Examination, June/July 2018 Fundamentals of CMOS VLSI

Max. Marks:100 Time: 3 hrs.

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Briefly explain the speed power performance of different technologies. (04 Marks)
 - Explain the different steps required for nMOS fabrication process. (10 Marks) b. What is noise margin? Explain CMOS inverter noise margins. (06 Marks)
- (10 Marks) Explain λ based design rules applicable to wires and contacts. a.
 - Write the stick diagram and layout for the Fig. Q2 (b). (05 Marks)

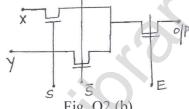


Fig. Q2 (b)

Write the layout for two input CMOS NAND gate.

(05 Marks)

- Explain the following logic structures with their salient features: 3
 - Pseudo nMOS logic
- (ii) Dynamic CMOS logic
- Clocked CMOS logic (iii)
- (iv) CMOS domino logic,

(20 Marks)

- Define sheet resistance and standard unit of capacitance. (02 Marks)
 - Explain propagation delays with respect to pass transistor chain and long polysilicon wires. (08 Marks)
 - Explain scaling factors as applicable to MOS device parameters. (10 Marks)

- (05 Marks) storage cells.
 - (05 Marks) Briefly explain the basic form of two phase clock generator circuit.
 - Explain bus arbitration logic for n-line bus.

(10 Marks)

Explain the concept of carry look ahead adder and represent the 4 bit block CLA unit. a.

(10 Marks)

- Discuss Baugh Wooley method used for two's complement multiplication. (10 Marks)
- What are the timing considerations in system design? (06 Marks)
 - Explain the read and write operation of a three transistor dynamic RAM memory cell. b.
 - (06 Marks) Explain decoder based selection and control of the 4×4 bit register array. (08 Marks)
- Explain input / output pads and represent the 4 bit processor pad utilization. (10 Marks) 8
 - With the help of example, explain sensitized path based testing a combinational logic. (10 Marks)