Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice.

ONE TIME EXIT SCHEME

				~ 12 (C) 1
USN	KI I I		CMRIT LIBRARY	10TE54
			BANGALORE - 568 937	

Fifth Semester B.E. Degree Examination, April 2018 Transmission Lines and Waveguides

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting atleast TWO questions from each part.

2. Use of Smith chart is permitted.

PART - A

- a. Derive an equation for voltage and current at any point on transmission line. (12 Marks)
 - b. A generator of 1 volt, 1000 Hz supplies power to a 100 km open wire line terminated in Z_0 having following parameters. The R = 10 Ω /km, G = 0.8×10^{-6} σ /km, L = 0.004 H/km and C = 0.008 μ F/km. Calculate the values of Z_0 , γ , α , β and λ . (08 Marks)
- 2 a. Derive the expression for cut-off frequency and characteristic impedance of constant K high pass filter T Section. (06 Marks)
 - b. What are standing waves? Draw the standing wave pattern for:
 - i) $Z_R = \text{open circuited}$
 - ii) $Z_R =$ short circuited
 - iii) $Z_R = 3Z_0$
 - iv) $Z_{R} = \frac{Z_{0}}{3}$
 - V) $Z_R = Z_0$

CMRIT LIBRARY

(08 Marks)

- c. Define the following terms:
- i) Reflection coefficient
 - ii) Reflection loss
 - iii) Insertion loss

(06 Marks)

- a. Show that the input impedance of OC and SC loss-less transmission lines are purely reactive. (08 Marks)
 - b. Obtain the relation between VSWR and reflection coefficient. Find the value of reflection coefficient and VSWR of line having $R_0 = 100 \Omega$ and $Z_R = 100 1100 \Omega$. (12 Marks)
- a. A load impedance of $Z_R = 60 j80\Omega$ is required to be matched to a 50Ω co-axial line, by using a short circuited stub of length ' ℓ ' located at a distance 'd' from the load. The wavelength of operation is 1 meter. Using Smith chart, find 'd' and ' ℓ '. (10 Marks)
 - b. Obtain the condition for voltage step-up on the resonant line.

(05 Marks)

c. Explain the applications of quarter wave line.

(05 Marks)

PART - B

a. State and prove the properties of 'S' parameters.

(10 Marks)

- b. Explain the theory of the scattering matrix representation of a multiport network. (05 Marks)
- c. Obtain the relationship between Z, ABCD and S parameters.

(05 Marks)

- a. Derive the expressions for propagation constant, cut-off frequency, group velocity, phase velocity for TE_{mn} mode in rectangular waveguide. (12 Marks)
 - b. Explain with neat sketches the construction and operation of precision type variable attenuator.

 (08 Marks)

BANGALORE - 560 037

1 of 2

CMRIT LIBRARY BANGALORE - 560 037

10TE54

7 a. Explain the working principle of GUNN diode.

(06 Marks)

b. With a neat diagram explain the construction and principle of operation of IMPATT diode.

(08 Marks)

c. Explain the PIN – diode as single switch.

(06 Marks)

8 a. Explain the operation of parametric amplifier with equivalent circuit. Also explain MANLEY-ROWE relations. (08 Marks)

b. Write short notes on the following:

i) BARITT diode

ii) Schoottky barrier diode

iii) READ diode

(12 Marks)

CMRIT LIBRARY

>

2 of 2