GBCS Scheme

USN		CMRIT LIBRARY BANGALORE - 560.037	15EC61
-----	--	-----------------------------------	--------

Sixth Semester B.E. Degree Examination, June/July 2018

Digital Communication

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- Define Hilbert transform. List the properties of the Hilbert transform. (04 Marks)
 - Obtain the canonical representation of band pass signals. (06 Marks)
 - What is line coding? For the binary stream 011010 sketch the following line codes:
 - i) Unipolar NRZ
 - ii) Polar NRZ
 - iii) Unipolar RZ
 - iv) Bipolar RZ
 - v) Manchester

(06 Marks

- Define pre-envelope of a real valued signal. Given a band pass signal s(t), sketch the amplitude spectra of signal s(t), pre-envelope $s_t(t)$ and complex envelope $\tilde{s}(t)$ (04 Marks)
 - Derive the expression for the complex low pass representation of band pass systems. b.

(08 Marks)

Write a note on HDBN signaling.

(04 Marks)

Module-2

- Explain the geometric representation of signals. Show that energy of the signal is equal to 3 (08 Marks) the squared length of the vector representing it.
 - Derive the expressions for mean and variance of the correlator outputs. Also show that the (08 Marks) correlator outputs are statistically independent.

Explain the Gram-Schmidt orthogonalization procedure.

(06 Marks) (10 Marks)

Obtain the maximum likelihood decision rule for the signal detection problem.

Module-3

- Explain the signal space representation for binary phase shift keying modulation. Also 5 derive the expression for the probability of error for the binary phase shift keying. (10 Marks)
 - With a neat block diagram, explain the generation and coherent detection of QPSK signals. (06 Marks)

OR

- With a neat block diagram, explain the non-coherent detection of binary frequency shift (04 Marks) keying technique.
 - b. Derive an expression for probability of error of binary frequency shift keying technique. Also draw the block diagrams of BFSK transmitter and coherent receiver. (10 Marks)
 - c. For the binary sequence given by 10010011, illustrate the operation of DPSK. (02 Marks)

CMRIT LIBRARY BANGALORE - 560 037

Module-4

With a neat block diagram of digital PAM system obtain the expression for inter symbol 7 interference (ISI).

b. State and prove Nyquist condition for zero (SA)

(06 Marks)

c. For the binary data sequence {d_n} given by 11101001. Determine the precoded sequence, transmitted sequence, received sequence and the decoded sequence. (04 Marks)

Explain the design of band limited signals with controlled ISI. (10 Marks) 8

What is a zero forcing equalizer? With a neat block diagram, explain the operation of linear (06 Marks) transversal filter.

Module-5

Explain the model of a spread spectrum digital communication system. (06 Marks)

Explain the generation and demodulation of direct sequence spread spectrum signals with necessary equation and block diagram. (07 Marks)

Write a note on low detectability signal transmission as an application of direct sequence (03 Marks) spread spectrum.

OR

With a neat block diagram, explain the frequency hopped spread spectrum. (07 Marks)

Explain the effect of despreading on a Narrow band interference in direct sequence spread spectrum systems. A direct sequence spread spectrum signal is designed to have the power ratio P_R/P_N at the intended receiver is 10^{-2} . If the desired $E_b/N_o = 10$ for acceptable performance, determine the minimum value of processing gain. (06 Marks)

Write a note on code division multiple access as an application of direct sequence spread (03 Marks)

spectrum.