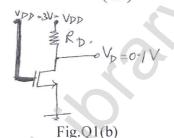

GBCS SCHEME

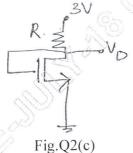
15EC655

Sixth Semester B.E. Degree Examination, June/July 2018 Microelectronics


Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.


Module-1

- a. Derive the expression for drain to source current for triode and saturation regions of n-MOSFET. (10 Marks)
 - b. Design the circuit shown in Fig.Q1(b) to obtain a drain voltage of 0.1V. Find the value of R_D . At the operating point, let $V_t = 0.5V$ and $K'_n \left(\frac{W}{L}\right) = 2mA/V^2$. (06 Marks)

)R

- 2 a. Derive the expression for drain current under channel length modulation. (08 Marks)
 - b. What is body effect? Write the expressions for V_t related to body effect and draw its small signal model. (04 Marks)
 - c. Design the circuit in Fig.Q2(c) to obtain $I_D=80~\mu A$, find the value required for R and find the DC voltage V_D . Let the NMOS transistor have $V_t=0.6V$, $\mu_n cox=200~\mu A/V^2$, $L=0.8\mu m$ and $W=4~\mu m$. Neglect channel length modulation. (04 Marks)

Module-2

- 3 a. Briefly explain any two types of baising methods in MOS amplifier circuits. (06 Marks)
 - b. Derive the expression for transconductance gm and voltage gain Av for a CS amplifier with small input signal. (10 Marks)

OR

- 4 a. Develop a T equivalent model for the MOSFET from a hybrid π model. (08 Marks)
 - b. For a n-channel MOSFET with $t_{ox}=10$ nm, $L=1.0\mu m$, $W=10\mu m$, $L_{OV}=0.05\mu m$, $C_{sbo}=C_{dbo}=10$ fF, $V_0=0.6$ V, $V_{SB}=1$ V and $V_{DD}=2$ V. Calculate the following capacitances when the transistor is operating in saturation C_{OX} , C_{OV} , C_{gs} , C_{gd} , C_{db} , C_{sb} . Given $E_{OX}=3.45\times10^{-11}$ F/m².

Module-3

- Make a comparison between BJT and MOSFET (Any 4 characteristics). (08 Marks) 5
 - Determine the G_V, A_y, R_{out}, R_{in}, A_{VO} for a common source MOS amplifier without source (08 Marks) degeneration.

OR

- Explain the operation of a MOS current steering circuit and mention its advantage. (08 Marks) 6
 - b. Consider CG amplifier designed using a circuit. Given $g_m = 1 \text{mA/V}$ and $R_D = 15 \text{ k}\Omega$. Find $R_{in},\,R_{out},\,A_V,\,A_{VO},\,$ and G_V for $R_L=15k\Omega$ and $R_{sig}=50\Omega$.

Module-4

- A CMOS CS amplifier fabricated in $0.18\mu m$ technology has $W/L = 7.2\mu m/0.36\mu m$ for all transistor $K'_n = 387 \mu \text{A/V}^2$, $K'_P = 86 \mu \text{A/V}^2$, $I_{ref} = 100 \mu \text{A}$, $V'_{An} = 5 \text{V/} \mu \text{m}$ and $|V_{AP}| = 6 \text{V/} \mu \text{m}$. Find g_{m_1} , r_{o_1} , r_{o_2} and voltage gain.
 - b. For a CG amplifier with active load determine the expression for R_i, A_{VO}, A_V, G_{VO}, G_V, R_O.

- Write a notes on: i) Double cascode ii) Folded cascode.
- (08 Marks)

b. Explain CMOS implementation of common source amplifier.

(08 Marks)

- For a MOS differential pair with a common mode voltage V_{CM} is shown in Fig. Q9 (a). Let $V_{DD} = V_{SS} = 1.5V$, $K'_{n} \left(\frac{W}{I}\right) = 4mA/V^{2}$, $V_{t} = 0.5V$, I = 0.4 mA and $R_{D} = 2.5k\Omega$. Neglect
 - channel length modulation. i) Find V_{OV} and V_{GS} for each transistor
 - ii) For $V_{CM} = 0$, find V_S , id, id₂, Vd_1 and Vd_2
 - iii) Repeat (b) for $V_{CM} = +1V$
 - iv) What is the highest value for which Q1 and Q2 are in saturation? If current I requires a minimum voltage of 0.4V to operate properly. What is the lowest allowed V_S and hence (10 Marks) V_{CM} ?

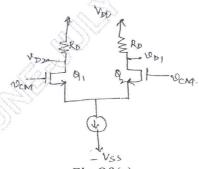


Fig.Q9(a)

What is the effect of mismatch of R_D on CMRR of a MOS differential amplifier? (06 Marks)

OR

- Explain the operation of MOS differential pair with a differential input signal. (08 Marks)
 - Explain 2-stage CMOS OPAMP configuration.

(08 Marks)