CBCS Scheme

USN						CMRIT LIBRARY	
				 *			BANGALORE S60 037

15TE63

Sixth Semester B.E. Degree Examination, June/July 2018 Microwave Theory and Antennas

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing one full question from each module.
2. Smith Chart is permitted.

Module-1

- a. What are the high frequency limitations of conventional vacuum tubes/transistors?
 - b. Describe the construction and working of a microwave tube that can be used as a low power microwave oscillator. (08 Marks)
 - c. A Reflex Klystras to be operated at frequency of 10GHz with d.c. beam voltage 300V, repeller space 0.1cm for ' $1\frac{3}{4}$ ' mode. Calculate P_{RFmax} and corresponding repeller voltage for a beam current of 20mA.

OR

- 2 a. Derive the transmission line equations by the method of distributed circuit theory. (08 Marks)
 - b. What is a stub? A single stub is used in shunt to match a lossless line of 400Ω to a load of $800 j300\Omega$. The frequency of operation is 3GHz. Determine the 'location' of the stub from the load and the 'length' of the stub using Smith Chart. (08 Marks)

Module-2

- a. Explain the following losses in microwave circuits/devices in terms of S-parameters:
 i) Insertion loss
 ii) Transmission loss
 iii) Reflection loss
 iv) Return loss. (08 Marks)
 - i) Insertion loss ii) Transmission loss iii) Reflection loss iv) Return loss. (08 Marks) b. Two transmission lines of characteristic impedance Z_1 and Z_2 are joined at plane $P P^1$.
 - b. Two transmission lines of characteristic impedance Z_1 and Z_2 are joined at plane P P. Explain the S-parameters in terms of impedances. (08 Marks)

OR

- 4 a. With a neat diagram, explain the working of precision type variable attenuator. (08 Marks)
 b. Stating the features of magic tee, with a neat diagram, explain the function of magic tee and
 - deduce its s-matrix. (08 Marks)

Module-3

- 5 a. Explain with neat diagram, the structure and field pattern of microstrip line and derive expression for characteristic impedance 'Z₀'. (08 Marks)
 - b. A lossless parallel strip line has a conducting strip width of 'W', the substrate dielectric separating the two conducting strips has a relative dielectric constant t_{rd} of '6' and thickness 'd' of 4mm. Calculate:
 - i) The required width 'w' of the conducting strip in order to have a characteristic impedance of 50Ω .
 - ii) The strip line capacitance.
 - iii) The strip line inductance.
 - iv) The phase velocity of the wave.

(08 Marks)

15TE63

OR

Define the following parameters of an antennal i) Directivity ii) Beam area. (06 Marks) An antenna has a field pattern given by $E(\theta) = \cos\theta \cos 2\theta$ for $0 \le \theta \le 90^\circ$. Find: i) HPBW (04 Marks) ii) Beam width between first nulls.

State and prove Friis transmission formula.

(06 Marks)

Module-4

State and prove power theorem and explain its application to an isotropic source. (04 Marks) 7 Explain the principle of pattern multiplication with an example. (08 Marks)

The radiation intensity of an antenna is given by

 $0 \le \theta \le \pi$ $U=U_{\mathfrak{m}}\,Sin\theta$

Find Directivity 'D'. and

(04 Marks)

OR

Derive expression for radiation resistance of a short electric dipole. (08 Marks)

Show that the radiation resistance of a linear $\lambda/2$ antenna with sinusoidal current distribution is equal to 73Ω . (08 Marks)

Module-5

The diameter of a circular loop antenna is 0.04λ. How many turns of antenna will give a (06 Marks) radiation resistance of 36Ω ?

Explain the features and practical design consideration of a Mono filar Helical Antenna.

(10 Marks)

OR

With a neat diagram, explain the operation of log-periodic antenna. (08 Marks) 10

Obtain the radiation resistance of a Small Loop Antenna. b.

(08 Marks)

