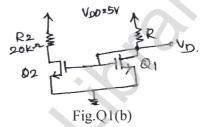
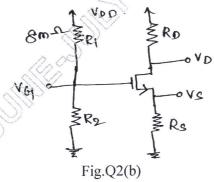


Sixth Semester B.E. Degree Examination, June/July 2018 Microelectronic Circuits


Time: 3 hrs.

Max. Marks:100


Note: Answer any THREE full questions from Part-A and any TWO full questions from Part-B.

PART - A

- Discuss the VI characteristics of the n-MOSFET in different regions by deriving i_D V_{DS} (12 Marks) relationship equation.
 - b. Consider the circuit given in Fig.Q1(b). Let the voltage V_D be applied to the gate of another transistor for Q_2 as shown in Fig.Q1(b). Assume Q_1 and Q_2 are identical and $\lambda = 0$. Find the drain current and voltage of Q_2 and R at Q_1 . Let $V_{DD} = 5V$, $V_t = 0.6V$, $\mu_n C_{ox} = 200~\mu\text{A/V}^2$, (08 Marks) $L = 0.8 \mu m$, $\omega = 4 \mu m$, $V_{OV} = 0.4 \text{ V}$.

- Characterize the common source single stage amplifier with and without source degeneration circuit by deriving the amplifier parameters of R_{in} , V_i , V_o , A_V , A_{VO} , R_{out} and G_{VO} .
 - b. Consider the circuit given in below Fig.Q2(b) to establish a decurrent of $I_D = 0.5$ mA. The MOSFET is specified to have $V_t = 1 \text{ V}$, $K'W/L = 1 \text{ mA/V}^2$. Let $\lambda = 0$, $V_{DD} = 15 \text{ V}$. If instead of given circuit fixed - Vgs bias circuit is used then find the value of required Vgs to establish $I_D = 0.5$ mA. Calculate in both the type of biasing circuits the percentage change in the value of ID obtained when MOSFET is replaced with another unit having the same K(W/L) but $V_t = 1.5V$. [Hint: Choose R_D and R_S to provide 1/3 of V_{DD} as a drop across (10 Marks) them].

- What do you understand about current steering process? Draw and explain a BJT current 3 steering circuit to generate number of constant currents of various magnitudes. (07 Marks)
 - What are the different short channel effects?

CMRIT LIBRARY

c. For the given circuit in Fig.Q3(c) find the width of all the transistors. Let $V_{DD}=V_{SS}=3V$, $V_{tn}=0.6V$, $V_{tp}=-0.6V$, and all the channel length L=1 µm, $K_n=200$ µA/V 2 , $K_P=80$ µA/V 2 , $I_{ref}=10$ µA, $I_2=80$ µA, $I_3=40$ µA, $I_5=70$ µA, and $\lambda=0$. The required voltage at the drain of Q_2 allowed to go down to within 0.3V of negative supply and that the voltage at the drain of Q_5 be allowed to go upto 0.2 V of the positive supply. (08 Marks)

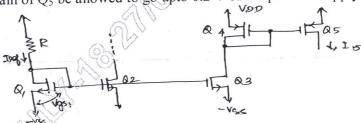


Fig.Q3(c)

- 4 a. Draw the circuit of common gate amplifier with its active loads. Discuss the small signal analysis and high frequency response. (10 Marks)
 - b. What are two different parameters that decides the performance of the current mirror. Explain the BJT Wilson current mirror circuit and compare it with cascode current mirror.
 - c. Design Widler current source circuit for generating a constant current $I_0 = 10 \mu A$ which operate from a 10V supply. Determine the values of the required resistors assuming V_{BB} is 0.7 V at a current of 1 mA and neglecting the effect of finite β . (04 Marks)
- a. Draw the circuit diagram and different stages of two stage CMOS op-amp and explain its structure with all its parameters. (10 Marks)
 - b. Discuss the large signal and small signal operation of the MOS differential pair. (10 Marks)

PART - B

- 6 a. Explain the different amplifiers to describe the four different feedback topologies. (10 Marks)
 - b. What do you understand about the frequency compensation method of an amplifier to maintain stability for desired value of gain? (10 Marks)
- 7 a. What are the different non-linear functional op-amp circuits? Explain them by deriving the expression for its output voltage. (10 Marks)
 - b. What are the limitations on the performance of op-amp circuits at large o/p signals?

 (07 Marks)
 - c. Design an inverting amplifier using op-amp having a gain of -10 and input resistance of $100 \text{ k}\Omega$.
- 8 a. Implement the CMOS logic circuit for the expression y = A + B(C + DE). Provide the W/L ratios of all n-transistor in your circuit, with proper transistor sizing. Assume that for the basic inverter n = 2 and p = 5 and that the channel length is 0.18 μ m. (08 Marks)
 - b. Design a level restored n-pass transistor logic circuit for the given expression Y = A + BC.
 Explain the concept of level restoration using your own circuit. (06 Marks)
 - c. Consider a CMOS inverter fabricated in a 0.25 μm process for which $C_{ox}=6$ fF/ μm^2 , $\mu_n C_{ox}=115$ $\mu A/V^2$ $\mu_p C_{ox}=30$ $\mu A/V^2$, $V_{th}=-V_{tp}=0.4$ V and V_{DD} 2.5 V. The W/L ratio of Q_N is $\frac{0.375 \mu m}{0.25 \mu m}$, and that for Q_p is $\frac{1.125 \mu m}{0.25 \mu m}$. The gate-source and gate-drain overlap

capacitances are specified to be $0.3~\rm fF/\mu m$ of gate width. Further the effective value of drain body capacitances are $C_{dbn}=1~\rm fF$ and $C_{dbp}=1~\rm fF$. The wiring capacitance $C_W=0.2~\rm fF$. Find propagation delay t_p .