

Sixth Semester B.E. Degree Examination, June/July 2018 Antenna and Propagation

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART - A

- Define the following terms as related to antenna system:
 - **HPBW**
 - (ii) Power density
 - Beam solid angle iii)
 - Directivity iv)
 - Radiation resistance

(10 Marks)

- Calculate the exact directivity for the following sources:
 - $i u = u_m \sin^2 \theta \sin^3 \phi$
 - ii) $u = u_m \sin\theta \sin^3\phi$ u has value only for $0 \le \theta \le \pi$ and $0 \le \phi \le \pi$ and is zero elsewhere.

(05 Marks)

- Define antenna aperture. Derive the relationship between aperture and beam area. (05 Marks)
- State and explain power theorems in terms of power density and radiation intensity.

(05 Marks)

- Obtain the relative field pattern for an array of two isotropic point sources of same (10 Marks) amplitude and opposite phase spaced $\lambda/2$ apart.
- c. Find the total power radiated and directivity of an antenna with radiation intensity.

 $u = u_m \cos^4 \theta \sin^{-2} \phi$ for $0 \le \theta \le \pi/2$ and $0 \le \phi \le 2\pi$.

(05 Marks)

- Write an explanatory note on folded dipole antenna with neat figure. (06 Marks) 3
 - Show that the radiation resistance of $\lambda/2$ antenna is 73Ω .

(09 Marks)

- For a short dipole $\lambda/15$ long, find the efficiency, radiation resistance if loss resistance is 1Ω . Find also the effective aperture. (05 Marks)
- Write a brief note on patch antenna.

(05 Marks)

- The radius of a circular loop antenna is 0.02λ. How many turns of the antenna will give a radiation resistance of 35Ω .
- What are the salient features of loop antenna? Obtain radiation resistance of a small loop (09 Marks) antenna.

PART - B

- With a neat diagram, explain the working of yagi-uda antenna in detail with design 5 formulae. Highlight its applications.
 - A dish antenna operating at a frequency of 1.43GHz has a diameter of 64 metres and is fed by a directional antenna. Calculate HPBW, BWFN and gain with respect to $\lambda/2$ dipole with even illumination.
 - c. Explain helical antenna with design considerations and working principle. Also highlight the (07 Marks) applications of the antenna.

CMRIT LIBRARY BANGALORE 260 037

CMRIT LIBRARY BANGALORE - 560 037

10EC64

6 a. Briefly write about various types of horn antennas with neat diagrams.

(05 Marks)

b. Explain the working of log periodic antenna.

(05 Marks)

- c. Write short notes on:
 - i) Embedded antenna
 - ii) Ultra wide band antenna.

(10 Marks)

- 7 a. Derive an expression for 'Line of Sight' distance (LOS) between transmitting and receiving antennas. (06 Marks)
 - b. Define wave tilt of a surface wave propagation. Also, prove that wave tilt,

$$\alpha = \tan^{-1} \frac{E_n}{E_v} = \tan^{-1} \left[\frac{1}{\sqrt{\epsilon_v}} \frac{1}{[1 + x^2]^{1/4}} \right].$$
 (10 Marks)

c. Explain duct propagation in brief.

(04 Marks)

- 8 a. Define the following as related to ionospheric propagation with standard formulaes:
 - i) Virtual height ii) Critical frequency iii) Maximum usable frequency.

(09 Marks)

- b. Calculate the value of frequency at which the electromagnetic wave should be propagated in D-region given that refractive index $\mu = 0.5$ and electron density $\gamma = 10^{12}$ electrons/m³.
- c. In an ionospheric wave propagation, the angle of incidence made at a particular layer at the height of 200km is 45°, with critical frequency 6MHz. Calculate the skip distance. (06 Marks)