ONE TIME EXIT SCHEME

USN CMRIT LIBRARY
BANGALORE - 568 037

10TE754

Seventh Semester B.E. Degree Examination, April 2018 Image Processing

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. With a neat diagram, explain the fundamental steps in digital image processing. (10 Marks)
 - b. With a neat diagram, briefly explain the brightness adaptation and discrimination applicable to Image processing. (10 Marks)
- 2 a. Explain the process of Image acquisition by sensor strips and sensor arrays. (10 Marks)
 - b. Consider the image segment shown;
 - i) Let $V = \{0, 1\}$ and compute the lengths of shortest 4, -8 and m path between p & q. If a particular path does not exists between these two points explain why? (10 Marks)
 - ii) Repeat for $V = \{1, 2\}$

a. For the given orthogonal matrix A and image U, calculate the transformed image V and the basis image. Also reconstruct the original image U by inverse transform. (10 Marks)

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

- b. Explain any three properties of two dimensional discrete Fourier transform. (06 Marks)
- c. Write a note on Separable Unitary Transforms.

(04 Marks)

- 4 a. Give an expression for 2D forward and inverse discrete cosine transform and list its properties. (10 Marks)
 - b. Generate Hadamard transform matrix H_n for n = 2, 3 for the given core matrix.

$$H_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

(08 Marks)

c. List any 2 properties of Harr transform.

(02 Marks)

PART - B

5 a. Explain the following:

(10 Marks)

- i) Log transformation
 - ii) Power Law transformation
 - iii) Contrast stretching.
- b. Briefly explain Histogram Statistics used for local and global image enhancement. (10 Marks)

1 of 2

10TE754

CMRIT LIBRARY BANGALORE - 568 037

a. Explain the following frequency domain filters and compare:

ii) Gaussian high pass filter.

(10 Marks)

b. Illustrate Homomorphic filtering process in image enhancement and derive the suitable result. (10 Marks)

a. Explain Image degradation and Restoration model, with a neat diagram.

(06 Marks)

b. Write a note on the following noise probability density functions:

i) Gaussian noise

ii) Erlang noise.

(06 Marks)

c. Derive an expression of the linear degradation model in the presence of additive noise.

(08 Marks)

8 a. With the help of a neat diagram, explain RGB color model and HSI color model. (10 Marks)

b. What is pseudo color image processing? Explain gray level to color transformations.

(10 Marks)