Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

USN

4NGALORE

Fifth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Digital Signal Processing

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part 2. Tables not permitted.

PART – A

1 a. Derive DFT from DTFT expression.

(05 Marks)

b. Find the 4 point DFT's of the two sequences x(n) and y(n) using a single 4 point DFT, x(n) = [1, 2, 0, 1] and y(n) = [2, 2, 1, 1]. (10 Marks)

c. For DFT pair shown, compute the values of boxed quantities using appropriate properties.

$$X_0$$
, 3, -4, 0, 2 \leftarrow DFT \rightarrow 5, X_1 , -1.28 - j3.414, X_3 , 8.78 - j1.4 (05 Marks)

- 2 a. State and prove i) circular convolution property of DFT and ii) Circular time shifting property of DFT. (10 Marks)
 - b. A long sequence x(n) is filtered through an FIR filter with impulse response h(n) = [1, 2] and an input x(n) = [1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1]. Use overlap and save with block length of input = 3. (10 Marks)
- 3 a. What are FFT algorithms? Explain the advantages of FFT algorithm over direct computation of DFT sequence. (03 Marks)
 - b. Derive the radix 2, DIT FFT (decimation in time) algorithm to compute 8 point DFT of a sequence and draw the complete signal flow graph. (08 Marks)
 - c. Find the circular convolution of x(n) and h(n) using DFT-IDFT method. Apply radix 2 DIF FFT: x(n) = [1, 2, 1, 0] and h(n) = [1, 2, 3, 0]. (09 Marks)
- 4 a. A designer has a number of 8 point FFT chips. Show how he should interconnect 3 such chips in order to compute 24 point DFT. (04 Marks)
 - b. Explain Goertzel algorithm and draw DF II structure for same.

(08 Marks)

c. Write a brief note on chirp – z transform and its applications.

(08 Marks)

PART - B

5 a. Starting from filter specifications, derive an expression for the order of Chebyshev filter.

(08 Marks)

- b. Find the poles of the polynomial of order 5. Obtain the transfer function H₅(s) for a normalized Butterworth Low pass filter. (08 Marks)
- c. Explains Analog Analog frequency transformation.

(04 Marks)

- 6 a. Explain how an analog filter is mapped onto digital filter using impulse invariance method.

 What are its limitations? (07 Marks)
 - b. Design and realize a digital law pass filter using bilinear transformation method to satisfy the following characteristics:
 - i) Monotonic in stop band and pass band
 - ii) -3db cut off at 0.5π rad and magnitude down at least 15db at 0.75π rad. (10 Marks)

- c. Using backward difference method of mapping, convert an analog filter with system function $H(S) = \frac{1}{S+2}$ into a digital filter. (03 Marks)
- 7 a. A filter is to be designed with the following desired frequence response

$$H_d(w) = 0$$
 $-\pi/4 < w < \pi/4$
= e^{-j2w} $\pi/4 < w < \pi$

Find filter coefficients h(n) if window function is defined as

$$w(n) = 1 \quad 0 \le n \le 4$$

(08 Marks)

= 0 otherwise

. Derive the frequency sampling structure of an FIR filter.

(08 Marks)

c. What are the conditions for location of zeros of linear phase FIR filter?

(04 Marks)

- 8 a. Determine the coefficients K_m of lattice filter corresponding to FIR filter described by system function $H(z) = 1 + 2z^{-1} + \frac{1}{3}z^{-2}$. Draw corresponding II order lattice structure. (06 Marks)
 - b. Realize the linear phase FIR filter having the following impulse response

 $h(n) = \delta(n) + \frac{1}{4}\delta(n-1) - \frac{1}{8}\delta(n-2) + \frac{1}{4}\delta(n-3) + \delta(n-4)$

RARY (06 Marks)

c. Obtain a cascade realization for a system described by

CMKII DRE - 560 037

$$H(z) = \frac{1 + \frac{1}{4}z^{-1}}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}\right)} \text{ using DF - II structure.}$$
 (08 Marks)

* * * * *