GBGS SCHEME

The state of			
10011			
XXX			
	(E)	(E)	

15TE63

Sixth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Microwave Theory and Antennas

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Discuss the mechanism of oscillation and also mode oscillation reflux Klystron oscillator.

(08 Marks)

b. Derive the transmission line equations and also solution for the same.

(08 Marks)

OR

- 2 a. Derive the expressions for reflection coefficient and transmission coefficients. (08 Marks)
 - b. A 50Ω coaxial line operating with wavelength 1 metre is terminated with an impedance of 60-j 80Ω . Design a single stub matching system to avoid standing waves using smith chart. (08 Marks)

Module-2

3 a. Show how the S-matrix is derived for a multiport network.

(08 Marks)

b. Discuss the properties of S-parameters in detail.

(08 Marks)

OR

- a. With a neat diagram explain the operating principle of two hole directional coupler and also derive its S-matrix.

 (08 Marks)
 - b. With a neat diagram, explain faraday rotation isolator.

(08 Marks)

Module-3

5 a. Discuss the different losses occurred in microstrip line.

(08 Marks)

- b. A loss less parallel stripline has a conducting strip width W. The relative dielectric constant ϵ_{rd} of the substrate is 6 and a thickness d of 4mm. Calculate:
 - i) The width W of the conducting strip in order to have characteristic impedance of 50Ω .
 - ii) Strip line capacitance
 - iii) Strip line inductance
 - iv) The phase velocity of the wave in the parallel strip line.

(08 Marks)

OR

- 6 a. Explain the following antenna parameters:
 - i) Beam solid angle
 - ii) Radiation intensity

Directivity.

iii) Half power beam width

(08 Marks)

b. Derive FRII's transmission formula for radio communication link.

(08 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-4

7 a. Derive the resultant radiation pattern for an array of two isotropic point sources placed $\lambda/2$ distance apart and fed with power of equal magnitude and phase. Draw the pattern.

(08 Marks)

b. State and explain power theorem as applied to a point source. The radiation pattern of a source is given by $u = u_m \sin^2 \theta$. Find its directivity for $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$. (08 Marks)

OR

8 a. Obtain an expression for radiation resistance of a short electric dipole. (08 Marks)

b. Give a geometry of a short dipole and explain the terms retarded current, retarded scalar potential and retarded vector potential.

(08 Marks)

Module-5

9 a. Derive an expression for radiation resistance of a small loop antenna. (08 Marks)

b. With the help of neat diagrams explain different types of rectangular antennas. (08 Marks)

OR

10 a. Discuss practical design considerations for a monofilar axial-mode helical antenna. Draw relevant diagrams wherever necessary. (08 Marks)

b. Discuss constructional features of a yagi-uda antenna. Draw a neat diagram of six element yagi-uda antenna with dimensions at 500 MHz. (08 Marks)