17EC32

Third Semester B.E. Degree Examination, June/July 2019 **Electronic Instrumentation**

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define the following terms as applied to an electronic instruments:
 - i) Accuracy
 - ii) Precision
 - iii) Error
 - iv) Resolution

v) Sensitivity

(10 Marks)

b. A basic D'Arsonval movement with an internal resistance of 50Ω and a fall scale deflection current of 2 mA is to be used as a multirange voltmeter. Determine the series resistances to obtain the voltage ranges of 0-10V, 0-50V, 0-100V and 0-500V. (10 Marks)

- Explain the working of a true RMS voltmeter with a suitable diagram. (10 Marks) 2 (10 Marks)
 - Explain the various types of thermocouple used in RF ammeter in detail.

- Module-2 Explain the working of dual slope type DVM with a block diagram. (10 Marks) 3 (10 Marks)
 - With a neat block diagram, explain the working of frequency meter.

OR

- Draw the block diagram and explain the working principle of successive approximation type 4 (10 Marks)
 - Explain the working of digital pH meter with the help of block diagram.

(10 Marks)

Module-3

Draw the block diagram of CRO and explain the functions of each block. 5 a.

(10 Marks)

Explain with a block diagram AF sine-square wane generator.

(10 Marks)

Explain with a block diagram of function generator in detail.

(10 Marks)

Explain the operation of digital storage oscilloscope with a help of block diagram. (10 Marks)

Module-4

Explain with a help of a neat diagram, construction and principle of operation of Megger. 7

(10 Marks)

Draw the Maxwell's bridge to determine inductance in terms of known capacitance and (10 Marks) derive Q-factor and expression for inductance.

OR

1 of 2

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

- 8 a. Find parallel R and C, that causes a Wien's bridge to null with the following components values. $R_1=2.7~\mathrm{K}\Omega,~R_2=22~\mathrm{K}\Omega,~C_1=5~\mu\mathrm{F},~R_4=100~\mathrm{K}\Omega$ and operating frequency is 2.2 kHz. (10 Marks)
 - b. Explain susceptance method of Q-measurement.

10 a.

(06 Marks)

c. The self capacitance of a coil is to be measured by Q-meter. The first measurement result is $f_1 = 1.5$ MHz and $C_1 = 550$ PF. The second measurement result is $f_2 = 3$ MHz and a new value of tuning capacitor is 110 pF. Find the distributed capacitance and inductance.

(04 Marks)

Module-5

9 a. What is transducer? Explain working of resistive position transducer with a neat sketch.
(10 Marks)

b. What are the different types of photoelectric transducer? Explain photo voltaic transducer.

CMRIT LIBRARY (10 Marks)
BANGALORE - 560 037

OR

With a neat sketch, explain construction and working of LVDT. (10 Marks)

b. What is gauge factor? Derive an expression for gauge factor and prove that $K = 1 + 2\mu$.

(10 Marks)

* * * * *