GBCS SCIEME

17EC45 USN

Fourth Semester B.E. Degree Examination, June/July 2019 **Linear Integrated Circuits**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

(08 Marks) With a neat circuit diagram, explain basic op-amp circuit. 1

Define the following terms with respect to op-amp and mention its value for 741 op-amp: b. (ii) Slew rate (iii) PSRR (i) CMRR

Two signals each range from 0.1V to 1V are to be summed and amplified by a factor 5 using LF353 BIFET op-amp design a suitable summing circuit. (06 Marks)

With a neat circuit diagram, explain the working of direct coupled non inverting amplifier. a. (08 Marks)

Explain the working of difference amplifier using op-amp. Also obtain the condition for b. (08 Marks) common mode nulling and output level shifting.

A LM308 op-amp with a closed loop gain of 33 has a common mode input of 1.5V. Calculate the maximum output voltage produced. The CMRR for LM308 op-amp is 80 dB. (04 Marks)

Module-2

With a neat circuit diagram, explain the working High Zin capacitor coupled voltage follower. Compare its input impedance with capacitor coupled voltage follower.

b. Design a capacitor coupled inverting amplifier using 741 op amp with input signal 30 mV and a load resistance of 2.2 K Ω is to have $A_V = 150$ and frequency $f_1 = 80$ Hz.

Design a high impedance capacitor coupled non-inverting amplifier using 741 op-amp to have a gain of 100 and $f_1 = 120$ Hz. The input signal is 40 mV and the load resistance varies (06 Marks) from 1.8 K Ω to 20 K Ω .

op-amp instrumentation amplifier that circuit 5 3 $-V_1$]. Also list the requirements for instrumentation amplifier.

(12 Marks)

Explain the operation of precision full wave rectifier using half wave rectifier and summing (08 Marks) circuit.

Module-3

With a neat circuit diagram and waveforms, explain the working inverting Schmitt trigger. 5 Also draw its transfer characteristics.

Design a RC phase shift oscillator to have an output frequency of 5 kHz. Use 741 op-amp b. (06 Marks) with ±12V supply. (06 Marks)

Explain a Peak detector circuit using op-amp.

OR

- 6 a. Draw the circuit of sample and hold circuit and explain the operation with necessary waveforms. (08 Marks)
 - b. Explain the working of Logarithmic amplifier using op-amp.

(06 Marks)

c. Design the capacitor coupled zero crossing detector using 741 op-amp having $I_{B \text{ max}} = 500 \text{ nA}$ and minimum signal frequency is 500 Hz. The supply voltages are $\pm 12\text{V}$. (06 Marks)

(00)

Module-4

- 7 a. Explain the working of first order active high pass filter using op-amp. Draw its frequency response. (06 Marks)
 - b. Design a second order low pass filter using 741 op-amp for a cut off frequency 1 kHz.

 (06 Marks)
 - c. Explain the working a single stage first order active band pass filter using op-amp. Draw its frequency response. (08 Marks)

OR

- 8 a. Explain the various performance parameters for IC regulators. (06 Marks)
 - b. Draw the functional block diagram 723 regulator and explain its operation. (08 Marks)
 - c. With a neat circuit diagram; explain the working of current limiting circuit (short circuit protection) in a 723 regulator. (06 Marks)

Module-5

- 9 a. Explain the working of Phase Locked Loop (PLL) with a neat block diagram. (08 Marks)
 - b. Explain the working of successive approximation type analog to Digital Converter (ADC).

(07 Marks)

c. What output voltage produced DAC whose output range is 0 to 10V and whose binary input is (i) 0110 (ii) 101111100? (05 Marks)

OR BANGALORE - 560 037

10 a. With a neat functional block diagram and waveforms, explain the working of astable multivibrator using 555 timer. Derive the expression for output frequency. (12 Marks)

b. Explain the working of 3 bit DAC using R-2R Ladder network.

(08 Marks)