

Time: 3 hrs.

Fourth Semester B.E. Degree Examination, June/July 2019

Control Systems

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define a control system. Explain the difference between open loop and closed loop control system with example for each. (06 Marks)
 - b. Determine the transfer function $X_2(s)/F(s)$ for the mechanical system shown in Fig.Q.1(b) (08 Marks)

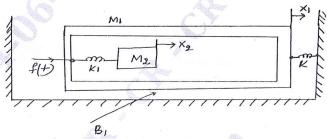
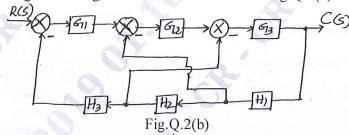


Fig.Q.1(b)

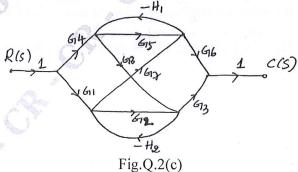
c. State advantages of the block diagram reduction technique.

(02 Marks)


OR

2 a. Explain the block diagram reduction rules.

(04 Marks)


b. Obtain C(s)/R(s) using block diagram reduction rules for the Fig.Q.2(b).

(06 Marks)

c. Using Mason's gain formula, find the gain of the system in Fig.Q.2(c).

(06 Marks)

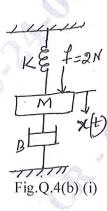
Module-2

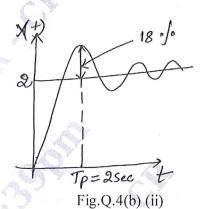
3 a. What are disadvantages of static error coefficient method?

(03 Marks)

b. Find k_p , k_v , k_a and static error for a system with open loop transfer function as:

$$G(s)H(s) = \frac{10(s+2)(s+3)}{s(s+1)(s+5)(s+4)}$$
 where the input is $r(t) = 3 + t + t^2$. (05 Marks)


c. Derive the expression of unit step response of a second order system (under damped case).


(08 Marks)

OR

- 4 a. Derive the expressions for Peak Time (T_P), Peak over short (M_P), Rise Time (T_R) and Settling Time (T_S). (08 Marks)
 - b. For a spring mass damper shown in Fig.Q.4(b) (i), an experiment was conducted by applying a force of 2 Newton's to the mass. The response X(t) was recorded using an xy plotter and the experimental result are shown in Fig.Q.4(b) (ii). Find the value of M, K and B.

 (08 Marks)

Module-3

- 5 a. State and explain Routh-Hurmitz criterion of stability. What are limitations? (05 Marks)
 - b. A unity feedback control system has $G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$, using Routh's criterion calculate the range of K for which the system is i) stable ii) has its closed loop, poles more negative than -1. (08 Marks)
 - c. Define absolute stability and marginal stability.

CMRIT LIBRARY
BANGALORE - 560 03

OR

- 6 a. State the rules for the construction of root loci of the characteristic equation of a feedback control system. (04 Marks)
 - b. Draw the root locus diagram for the loop transfer function:

G(s)H(s) =
$$\frac{K}{s(s^2 + 8s + 17)}$$

From the diagram, evaluate the value of K for a system damping ratio of 0.5. (12 Marks)

Module-4

- 7 a. Explain the correlation between time and frequency time for second order system. (06 Marks)
 - b. A unity feedback control system has $G(s) = \frac{80}{s(s+2)(s+20)}$. Draw the bode plot. (10 Marks)

OR

8 a. Distinguish between gain margin and phase margin.

(04 Marks)

b. Draw the complete Nyquist plot of the system whose loop transfer function is given by $G(s) = \frac{10}{s^2(s+0.25s)(1+0.5s)}$. And hence determine system is stable or not. (12 Marks)

Module-5

- 9 a. Define state variables and state transition matrix. List the properties of the state transition matrix. (06 Marks)
 - b. For a certain system, when

$$X(0) = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \text{ then } X(t) = \begin{bmatrix} e^{-3t} \\ -3e^{-3t} \end{bmatrix} \text{ while } X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ then } X(t) = \begin{bmatrix} e^{t} \\ e^{t} \end{bmatrix}. \text{ Determine the system matrix A. Also find state transition matrix.}$$

$$(10 \text{ Marks})$$

OR

10 a. Obtain the state model for the electrical system as shown in the Fig.Q.10(a), choosing the state variables as $i_1(t)$, $i_2(t)$ and $v_c(t)$. (06 Marks)

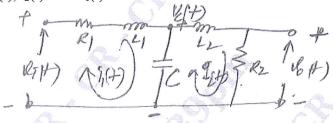


Fig.Q.10(a)

CMRIT LIBRARY

b. State and prove sampling theorem for low pass signals.

(10 Marks)