

Time! 3 hrs

Fifth Semester B.E. Degree Examination, June/July 2019

Digital Signal Processing

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Define DFT and establish the relationship between the Fourier series co-efficient of a continuous time signal and DFT. (04 Marks)
 - b. An program to find DFT of a complex valued sequence x(n) is given, how can this program be used to find IDFT of X(K). (03 Marks)
 - c. Find the N-point DFT of the sequence: x(n)=a.n for $0 \le n \le N-1$

(07 Marks)

d. If the time-domain expression:

$$W(n) = \frac{1}{2} + \frac{1}{2} \cos \left[\frac{2\pi}{N} \left(n - \frac{N}{2} \right) \right]$$

What is the DFT of the windowed sequence,

$$y(n) = x(n).W(n)$$

Express the answer in terms of X(K).

(06 Marks)

2 a. For DFT pair shown, compute the values of the boxed quantities using appropriate properties: $\{x_0, 3, -4, 0, 2\} \xleftarrow{\text{DFT}} \{5, x_1, -1.28 \text{-j} 3.49, x_3, 8.78 \text{-j} 1.4\}$ (03 Marks)

b. Consider the sequence $x_1(n) = \{0, 1, 2, 3, 4\}$, $x_2(n) = \{0, 1, 0, 0, 0\}$, $S(n) = \{1, 0, 0, 0, 0\}$ and this 5-point DFT's.

- (i) Determine the sequence y(n) so that $Y(K) = X_1(K) \cdot X_2(K)$.
- (ii) Is there a sequence $x_3(n)$ so that $S(K) = X_1(K) \cdot X_3(K)$ (07 Marks)
- c. Two finite sequences x(n) = [x(0), x(1), x(2), x(3)] and h(n) = [h(0), h(1), h(2), h(3)] have DFT's given by:

$$X(K) = DFT\{x(n)\} = \{1, j, -1, -j\}$$

$$H(K) = DFT\{h(n)\} = \{0, 1+j, 1, 1-j\}$$

Using the properties of DFT, find the following:

- (i) $X_1(K)=DFT\{h(0), -h(1), h(2), -h(3)\}$
- (ii) $X_2(K) = DFT\{x(0), h(0), x(1), h(1), x(2), h(2), x(3), h(3)\}$ (06 Marks)
- d. If $x(n) = \{1, 2, 0, 3, -2, 4, 7, 5\}$, evaluate the following: (i) $\sum_{K=0}^{7} X(K)$ (ii) $\sum_{K=0}^{7} |X(K)|$.

- 3 a. If we perform DFT of an N-length sequence six times, what will be the resulting sequence?
 (03 Marks)
 - b. Find the output y(n) of a filter whose impulse response

$$h(n) = \{1, -1\}$$
 and

$$x(n) = \{1, 1, 1, 1, 1, 3, 1, 1, 4, 2, 1, 1, 3, 1\}$$

Using Overlap save method and 5-point circular convolution.

(08 Marks)

- Explain In-place computation? How many complex additions and multiplications are required for N = 16 points, if DFT is computed directly and if FFT is used. (05 Marks)
- d. Compute DFT of the sequence, $x(n) = \cos\left(\frac{n\pi}{2}\right)$ where N = 4, using DIT-FFT algorithm.

(04 Marks)

4 a. Mention any four differences between DIT and DIF-FFT algorithms.

(04 Marks)

- b. Given $x_1(n) = \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$ and $x_2(n) = \{1, 1, 1, 1\}$.
 - (i) Compute DFT of $x_1(n)$ using DIT-FFT.
 - (ii) Compute DFT of $x_2(n)$ using DIF-FFT.
 - (iii) Using above results, compute ⊛_N by IDIF-FFT.

(10 Marks)

c. Consider the sequence x(n) = u(n) - u(n-8), using chirp z-transform, determine the values

$$X(Z_0)$$
 and $X(Z_1)$, where $Z_0 = e^{j\frac{2\pi}{8}}$ and $Z_1 = e^{j\frac{4\pi}{8}}$

(06 Marks)

PART - B

- 5 a. An Butterworth low pass filter has to meet the following specifications:
 - (i) Passband gain, $K_P = -1$ dB @ $\Omega_P = 4$ rad/sec.
 - (ii) Stop band attenuation greater than or equal to 20 dB @ $\Omega_S = 8$ rad/sec.

Determine the transfer function H_a(s) of the lowest-order Butterworth filter to meet the above specifications. (10 Marks)

- b. Design a Chebyshev I filter to meet the following specifications:
 - (i) Passband ripple : ≤ 2 dB
 - (ii) Passband edge: 1 rad/sec
 - (iii) Stopband attenuation: ≥ 20 dB
 - (iv) Stop band edge: 1.3 rad/sec.

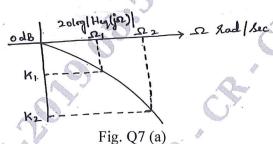
(10 Marks)

6 a. Realize the following Transfer function,

$$H(z) = \left\{ \frac{0.7 - 0.25z^{-1} - z^{-2}}{1 + 0.1z^{-1} - 0.72z^{-2}} \right\}$$

CMRIT LIBRARY
BANGALORE - 560 037

Using Direct form – I, Direct form – II and Cascade form's.


(12 Marks)

b. The Coefficients of a 3-stage FIR lattice structure are given by $K_1 = 0.1$, $K_2 = 0.2$, $K_3 = 0.3$. Find the co-efficients of Direct form – I, FIR filter and draw its block diagram.

(08 Marks)

(10 Marks)

7 a. An analog signal contain's frequencies upto 10 kHz. This signal is sampled @ 50 KHz. Design an FIR filter having a linear phase characteristics and a transition band of 5 kHz. The filter should provide minimum 50 dB attenuation at the end of transition band, with respect to Fig. Q7 (a). (10 Marks)

- b. Design a 17-tap linear phase FIR filter with a cut-off frequency $W_C = \frac{\pi}{2}$. The design is to be done based on frequency sampling technique. (10 Marks)
- 8 a. An Digital IIR low pass filter is required to meet the following frequency-domain specifications:

Pass band ripple : $\leq 1 \text{ dB}$

Pass band edge frequency: 0.33π rad

Stop band attenuation : ≥40 dB

Stop band edge frequency: 0.5π rad

The digital filter is to be designed by applying Bilinear transformation on an analog system function. Determine the order, N of Butterworth and Chebyshev filter's needed to meet the specification's in the digital implementation. (10 Marks)

b. An Third-order Butterworth low pass filter has the transfer function:

$$H(s) = \frac{1}{(s+1)(s^2 + s + 1)}$$

Design H(z) using Impulse Invariant technique.

CMRIT LIBRARY