Sixth Semester B.E. Degree Examination, June/July 2019 **Microwaves and Radar** Time: 3 hrs. GILORE . ST Max. Marks: 100 Note: Answer any FIVE full questions, selecting at least TWO questions from each part. ## PART - A | 1 | a. | Derive an | expression | for | reflection coefficient | and | transmission | coefficient | in | the | |---|----|--------------------|------------|-----|------------------------|-----|--------------|-------------|----|-----| | | | transmission line. | | | | | (10 Marks) | | | | A 100 Ω coaxial line with air as dielectric is terminated by a load impedance of 75 + j40 Ω and is excited at 1 GHz by a matched generator. Find the position of SC shunt single matching stub of 100Ω impedance on the line and determine the length of the stub. (10 Marks) Derive electric and magnetic field equations in rectangular waveguide for TM_{mn} modes. 2 (08 Marks) - b. With a neat diagram, explain the operation of the following microwave devices: - Working of four port circulator. (12 Marks) Ferrite rotation isolator. (ii) - Explain the principles of operation of the GUNN diode with formation of Gunn domain. 3 And also briefly, explain the modes of operation of the Gunn diode with Gunn-oscillation (08 Marks) - b. Explain the principle of operation of Read diode with suitable diagrams. (06 Marks) - Draw the equivalent circuit diagram for parametric amplifier and explain. (06 Marks) - What are the different properties of scattering parameters? Explain briefly. (08 Marks) a. - b. Explain the relation between incident and reflected waves in terms of scattering parameters (06 Marks) for a two port network. - c. Define the following losses in a microwave network in terms of S-parameters: - (i) Insertion loss (ii) Transmission loss (iii) Reflection loss (iv) Return loss (06 Marks) ## PART – B With a neat sketch, explain the operation of magic tee and mention its applications. 5 (10 Marks) - With a neat diagram, explain the operation of following microwave devices: - (i) Precision type variable attenuator. (ii) Precision Rotary Phase shifter. (10 Marks) - Explain the operation of Microstrip lines and striplines with diagrams. Explain the dielectric losses in microstrip lines. CMRIT LIBRARY CMRIT LIBRARY (08 Marks) 6 - b. Explain the dielectric losses in microstrip lines. (08 Marks) - BANGALORE 560 037 Write short notes on coplanar striplines. (04 Marks) - a. Derive an expression for the basic form of Radar-Range equation and hence explain the 7 (08 Marks) factors influencing the maximum range of radar. - What are the applications of Radar? Explain each application briefly (4 applications any). b. (06 Marks) - A radar is expected to detect a target of cross sectional area of 10 m². The antenna used is a parabolic dish of diameter 5 m. The radar operates at a wavelength of 10 cms and transmits peak pulse power of 0.2 megawatts. Receiver have minimum signal power of 10⁻¹³ watts. Find the maximum range of target can be detected. - Explain the principle and working of MTI Radar with the help of block diagram. (10 Marks) 8 - Write explanatory notes on: b. - (10 Marks) (i) Single delay-line cancellers. (ii) Blind speeds with equations. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.