

CBCS SCHEME

15EC655

Sixth Semester B.E. Degree Examination, June/July 2019 Microelectronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Derive the expression of drain current of a MOS device for triode and saturation region.
 - b. Consider a CMOS process for which $L_{min}=0.4\mu m,\ t_{ox}=8nm,\ \mu_n=450cm^2/v.s$ and $v_t=0.7V$
 - i) Find C_{ox} and k_n^1
 - ii) For an NMOS transistor $\frac{W}{L} = \frac{8 \mu m}{0.8 \mu m}$. Calculate the values of V_{GS} and V_{DSmin} needed to operate a transistor in saturation region with a DC current $I_D = 100 \mu A$.
 - iii) For the derive in (ii), find the value of V_{GS} required to cause the device to operate as 1000Ω resistor for a very small V_{DS} . (08 Marks)

OR

- 2 a. With the neat diagram obtain the expression for finite O/P resistance in saturation region.
 (07 Marks)
 - b. Define the following parameter with respect to MOSFET:

i) Threshold voltage ii) Body Effect.

(05 Marks)

c. For the circuit shown in Fig.Q.2(c), find the values of R and V_D to obtain a current I_D of $80\mu A$. Let the NMOS transistor have $V_t = 0.6V$, $\mu_n C_{ox} = 200\mu A/V^2$, $L = 0.8\mu m$ and $W = 4\mu m$. Assume $\lambda = 0$.

Module-2

- 3 a. Draw the circuit diagram of source follower amplifier. Draw its small signal equivalent circuit with r_o. Obtain the expression for R_{in}, R_{out}, A_v, A_v and Gv. (10 Marks)
 - b. List the various techniques used for biasing in MOS amplifier circuits and explain any two in detail.

OR

- 4 a. Draw the development of T-Equivalent circuit model for the MOSFET. (05 Marks)
 - b. Explain the high frequency model of MOSEET with a neat diagram and internal capacitances. (06 Marks)
 - c. Derive the expression for transconductance g_m and voltage gain A_v for a common source amplifier with small input signal. (05 Marks)

Module-3

- 5 a. Determine the G_v, A_v, R_{out}, R_{in}, A_{vo} for a common source MOS amplifier. (08 Marks)
 - b. Derive the expression for determining 3-dB frequency (W_H) of an amplifier. (08 Marks)

OR

- 6 a. Explain the operation of a MOSFET current steering circuits with necessary expressions.

 (08 Mark
 - b. Fig.Q.6(b) shows an ideal voltage amplifier having a gain of -100V/V with an impedance Z is
 - i) A $1M\Omega$ resistance
 - ii) A 1pF capacitance. In each case, use the equivalent circuit to determine V_0/V_{sig} .

(08 Marks)

Fig.Q.6(b)

Module-4

7 a. Consider a CMOS CS amplifier in Fig.Q.7(a) for the case $V_{DD}=3V$, $V_{tn}=\left|V_{tp}\right|=0.6V$, $\mu_n C_{ox}=200\mu A/V^2$, $\mu_p C_{ox}=65~\mu A/V^2$ for all transistors $L=0.4\mu m$, $W=4\mu m$. Also $V_{An}=20V$, $\left|V_{AP}\right|=10V$, $I_{REF}=100\mu A$. Find g_{m1} , r_{o1} , r_{o2} and small signal voltage gain.

(06 Marks)

b. For a common gate amplifier with active load determine the expression for R_i , A_{vo} , A_v , G_{vo} , G_v , R_o . (10 Marks)

OR

- 8 a. Explain the following: i) Double cascode ii) Folded cascode. (08 Marks)
 - Explain the high frequency response of MOS cascode amplifier with necessary diagram and expressions.

Module-5

- 9 a. Explain the operation of MOS differential pair with a differential input voltage. (08 Marks)
 - b. Prove that $A_{CM} = \frac{-r_{04}}{2R_{ss}} \times \frac{1}{1 + g_{m3}r_{o3}}$ for the active loaded MOS differential amplifier.

(08 Marks)

OR

10 a. For the nMOS differential pair with a common mode voltage V_{CM} applied as shown in Fig.Q.10(a). Let $V_{DD} = V_{SS} = 2.5 V \ K_n^1 \frac{W}{L} = 3 mA/v^2$, $V_{tn} = 0.7 V$, I = 0.2 mA, $R_D = 5 K \Omega$.

Neglect channel length modulation

- i) Find V_{OV} and V_{GS} for each transistor
- ii) For $V_{CM} = 0$, Find Vs, i_{D1} , i_{D2} , V_{D1} and V_{D2}
- iii) What is highest value of V_{cm} for which Q_1 and Q_2 remain in saturation, if current source I requires a minimum voltage of 0.3V to operate properly. What is the lowest value for V_s and hence for V_{cm} ?

OMRIT LIBRAKY RANGALORE - 560 037

Fig.Q.10(a)

(08 Marks)

b. With neat circuit diagram, explain the operation of two stage CMOS Op-amp configuration.
(08 Marks)

