

GBCS SCHEME

15TE655

Sixth Semester B.E. Degree Examination, June/July 2019 Image Processing

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. With the help of a neat block diagram, explain the components of a general purpose image processing system. (10 Marks)
 - b. Explain briefly the following terms:
 - i) Brightness adaptation
 - ii) Mach bands
 - iii) Weber's ratio.

(06 Marks)

OR

2 a. Explain the concept of Image Acquisition using a single sensor.

(06 Marks)

b. Consider the image segment shown. Let $V = \{0, 1\}$. Compute the lengths of the shortest 4-, 8- and m-path between p and q. If a particular path does not exist between these two points, explain why?

(06 Marks)

3	1.	2	1(q)
2	2	0	2
1	2	1	1
(p) 1	0	1	2

c. Explain briefly the concept of distance measure of a pixel.

(04 Marks)

Module-2

- 3 a. Explain the following gray level slicing. Intensity slicing and bit plane slicing. (06 Marks)
 - b. For a 3-bit image of size 64 × 64 pixels, the intensity distribution is shown in Table Q.3(b). Where intensity levels are integers in the range [0, L-1] = [0, 7]. Obtain the histogram graph before and after equations. (10 Marks)

~		0 0	41.
1 a	b le	Q.3	(b)

r_k	n_k	
$r_0 = 0$	790	
$r_1 = 1$	1023	
$r_2 = 2$	850	
$r_3 = 3$	656	
$r_4 = 4$	329	
$r_5 = 5$	245	
$r_6 = 6$	122	
$r_7 = 7$	81	

OR

4 a. Consider the following 2-bit image of size 5 × 5. Compute mean value of the intensities in the image using histogram and compare mean value when computed directly from the sample values.

(06 Marks)

	0	0.	1	1	2
	. 1	2	3	0	1
	3	3	2	2	0
	2	3	1	0	0
-	1	1	3	2	2

b. Explain the basic concepts of spatial filtering in image enhancement and hence explain the importance of soothing filter. (10 Marks)

Module-3

5 a. Explain any four properties of 2-D discrete Fourier transform.

(10 Marks)

b. Explain image interpolation, resampling and Moire patterns.

(06 Marks)

OR

6 a. Explain any four types of mean filters.

(08 Marks)

b. Explain with neat diagrams, Gaussian noise, Rayleigh noise Erlang noise and Impulse noise.
(08 Marks)

Module-4

- 7 a. Explain three principal ways to estimate the degradation function to be used in image restoration. (06 Marks)
 - b. Describe the process of image restoration by inverse filtering.

(04 Marks)

c. Explain briefly Erosion and dilation.

(06 Marks)

OR

8 a. Explain Hit or miss transformation.

(06 Marks)

b. Explain the following Morphological algorithms, boundary extraction. Hole-filling, extraction of connected components convex hull, thinning. (10 Marks)

Module-5

9 a. Explain region based segmentation techniques.

(08 Marks)

b. Explain chain codes.

CMEST LIBRARY
RANGALORE - 560 037

(08 Marks)

OR

10 a. Explain Minimum Perimeter Polygon (MPP) algorithm.

(10 Marks)

b. Explain the following: Signatures, Boundary segments and skeletons.

(06 Marks)