emester B.E. Degree Examination, June/July 2019 Antennas and Propagation

Max. Marks: 100

Note: 1. Answer any FIVE full questions, selecting at least TWO full questions from each part.

- 2. Assume any missing data suitably.
- 3. Draw neat diagrams wherever necessary.

- Explain the following Antenna parameters:
 - Beam solid angle i)
 - ii) Radiation intensity
 - Beam efficiency iii)
 - iv) Directivity
 - Gain
 - (10 Marks) v)
 - Find the relation between effective aperture and directivity.

(05 Marks)

Derive Friis transmission formula.

- (05 Marks)
- 2 For a source having radiation intensity $u-u_m \sin\theta \sin^2\phi$ find the directivity by
 - i) Exact method ii) Approximate method.

(08 Marks)

- Calculate the maximum power received at a distance of 0.5km over a free space 1GHz circuit consisting of transmitting antenna with 25dh gain and a receiving antenna gain of (06 Marks) 20db. Assume the transmitting antenna input is 150 watts.
 - State and explain power theorem.

(06 Marks)

- Derive an expression for field intensity for two isotropic point sources with equal amplitude 3 and equal phase.
 - Illustrate the principle of pattern multiplication with suitable examples.
- (05 Marks)
- Calculate and plot the field pattern of an array of two non isotropic dissimilar sources for which the total field is given by $E = \cos\phi + \sin\phi \left[\underline{\psi} \right]$ where $\psi = \frac{\pi}{2}(\cos\phi + 1)$. Take source

1 as the reference as shown in Fig.Q.3(c)

(05 Marks)

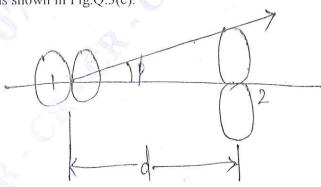


Fig.Q.3(c)

4	a. b.	Derive an expression for radiation resistance of a short electric dipole. Write short notes on:	(10 Marks)
		i) Folded dipole antenna	
		ii) Thin linear antenna.	(10 Marks)
			(10 1111113)
PART - B			
5	a.	Show that the radiation resistance of loop antenna is given by 31200 $\left(\frac{nA}{\lambda^2}\right)^2$.	(10 Marks)
	b.	Write notes on: i) Patch antenna ii) Slot antenna.	(10 Marks)
6		Write short notes on:	
	a.	Antennas for ground penetrating radar	(05 Marks)
	b.	Embedded antenna	(05 Marks)
	C.	Turnstile antenna	(05 Marks)
	d.	Log periodic antenna.	(05 Marks)
7	a. b.	Explain the propagation of wave by means of i) Surface wave ii) Diffraction. For isotropic wave propagation, show that the radius of curvature of path is a rate of change of refractive index with height and explain the duct wave of propagation.	(10 Marks) function of
		Cy C	(10 Marks)
8	a. b.	Explain different layers of ionosphere in detail. Define the following with respect to wave propagation: i) Critical frequency	(10 Marks)
		ii) Maximum usable frequency iii) Virtual height CMRIT LIBRARY RANGALORE 560 937	
		iv) Skip distance.	(10 Marks)