, and the set of $\langle \langle \hat{v} \rangle \rangle$ \mathcal{S} ixth Semester B.E. Degree Examination, Dec.2017/Jan.2018 \oslash **Heat and Mass Transfer** \oslash

,-:-~~ 12~\:/

Time: 3 hrs. //~ ~ I'Marks: 100 **Note: 1. Answer any FIVE full questions, selecting** *'C;'/::' at least TWO questionsfrom each part. /~~:"~)* 2. *Use of heat and mass transfer data book is permitted.* $PART - A$

- 1 a. Define Thermal Diffusivity. (04 Marks)
b. The inside temperature of a furnace wall with $k = 1.35$ N/m.K. -200 mm thick is 1400°C. The The inside temperature of a furnace wall with $k = 1.35$ *N/m.K_r*-200 mm thick is 1400 °C. The heat transfer coefficient at the outside surface is a function of temperature difference and is given by $(h = 7.85 + 9.08\Delta T)$ W/m².K. where ΔT is the temperature difference between outside wall surface and surroundings. Determine the rate of heat transfer per unit area, if the surrounding temperature is 40° C. $\qquad \qquad (08 \text{ Marks})$
	- c. The temperature distribution across a wall, 1 m thick at a certain instant of time is given as $T(x) = 900 - 300x - 50x^2$, where T is in degree Celsius and x in metre. The uniform heat generation of 1000 *W/m³* is present in wall of area 10 m² having the propertie $p = 1600 \text{ kg/m}^3$, k = 40 W/m.K and $C = 4$ kJ/kg.K. Determine
		- (i) The rate of heat transfer entering the wall at $x = 0$ and leaving the wall at $x = 1$ m.
		- (ii) The rate of change of internal energy of the wall
	- (iii) The time rate of temperature change $a\bar{v}x = 0, 0.5$ m. (08 Marks)
- 2 a. Define fin effectiveness. When the use of fins is not justified? (03 Marks)
b A plane wall $k = 45$ W/m K 10 cm thick generated at a uniform rate of 8×10^6 W/m³. The b. A plane wall k = 45 *W/m.K* 10 cm thick, generated at a uniform rate of 8×10^6 *W/m*³. The two sides of the wall are maintained at 180° C and 120° C. Neglect end effects, calculate
	-
	- (i) Temperature distribution across the plate.
(ii) Position and magnitude of maximum temperature. **CMRIT LIBRARY**
	- Position and magnitude-of maximum temperature. CMRII LILING (iii) The heat flow rate from each surface of the plate. **BANGALORE 1999** (09 Marks)
	- c. A very long rod, 25 mm in diameter, has one end maintained at 100° C. The surface of the rod is exposed to ambient air at 25°C with convection coefficient of 10 *W/m*².K. What are the heat losses from the-rods, constructed of pure copper with $K = 398$ W/mK and stainless steel with K =14 W/m.K)? Also, estimate how long the rods must be to be considered $\lim_{x \to \infty}$ (08 Marks)
- 3 a. Define Biot number and Fourier number. $\mathcal{O}_{\leq 0}$ (03 Marks)
	- b. An aluminium wite; 1 mm in diameter at 200°C is suddenly exposed-to an environment at 30°C with $h = 85.5$ W/m²K. Estimate the time required to cool the wire to 90°C. If the same wire to place in air stream (h = 11.65 *W/m²K)*, what would be time required to reach it to whe to place in an stream $(n - 11.65)$ w/m K), what would be three ledging to reach it to 90° C. Assume thermophysical properties C = 900 *J/kg.K,* $\rho = 2700$ kg/m³; (k) = 204 *W/m.K. I'~ \ \" / '\":J~* (09 Marks)
	- c. A long cylindrical shaft 20 cm in diameter is made of steel k = 14.9 W/m.k $\varphi = 7900$ kg/m³, $C = \frac{477 \text{ J/kg}}{8}$. K and $\alpha = 3.95 \times 10^{-6} \text{ m}^2/\text{s}$. It comes out an oven at a uniform temperature of 600° C with an average 60 6° C.) The shaft is then allowed to cool slowly in an environment at 200°C with an average heat transfer coefficient of 80 W/m² K. Calculate the temperature at the centre of the shaft, $\sqrt[4]{45}$ min after the start of cooling process. Also calculate the heat transferred per unit length \bigcirc f the shaft during this period. (08'Marks)
- 4 a. Explain velocity and thermal boundary layer. (04 Marks)
	- b. A fan provides air speed upto 50 *mls* is used in low speed wind tunnel with atmospheric air at 27'C. If this wind tunnel is used to study the boundary layer behavior over a flat plate upto $R_a = 10^8$. What should be the minimum plate length? At what distance from the leading edge would transition occur, if critical Reynolds number $R_{e_{\alpha}} = 5 \times 10^5$? (08 Marks)

 1 of 2

- **lOME63** c, \triangle Calculate the approximate Reynolds numbers and state if the flow is laminar or turbulent for the following: (i) A 10 m long yatch sailing at 13 km/h in sea water, $p = 1000 \, \text{kg/m}^3$ and $\mu = 1.3 \times 10^{-3}$ kg/m.S. (ii) A compressor disc of radius 0.3 m rotating at 15000 rpm in air at $\frac{1}{2}$ bar and 400°C $\frac{d^{3}y}{dx^{4}} = \frac{1.46 \times 10^{-6} \text{T}^{\frac{3}{2}}}{(110 + \text{T})} \text{kg/m}.\text{S}$ $\mathbf{PART} - \mathbf{B}$ a. Define Grash of number and Stanton number. $(9 \cap Marks)$ (04 Marks) b. Air at 27[°]C and *L*^atmosphere pressure flows over a heated plate with a velocity of 2 m/s. Air at 27 C and Addition temperature of 60°C. Calculate the heat transfer rate from first 0.2 m
The plate is at uniform temperature of 60°C. Calculate the heat transfer rate from first 0.2 m
(08 Marks) c. Air at velocity of 3 m/s and at 20[°]C flows over a flat plate along its length. The length, width and thickness of the plate are 100 cm, 50 cm and 2 cm respectively. The top surface of the plate is maintained at 100° C. Calculate the heat lost by the plate and temperature of bottom surface of the plate for the steady state conditions. The thermal conductivity of the plate may taken as 23 W/mK. $\qquad \qquad \qquad$ $\qquad \qquad$ $\$ *CMRIT LIBRARY* **BANGALORE - 560 037** a. Classify heat exchange in three broad classes. **IDEANGALORE** - 560 037 (04 Marks) b. Hot engine oil is to be cooled in a double pipe-counter flow heat exchanger. The copper tube has a diameter of 2 cm with negligible/thickness. The inner diameter of outer tube is 3 cm. The water flow through the inner tube at a rate of 0.5 kg/s and oil flows through the annular space at a rate of 0.8 kg/s. Taking the average temperature of water and oil as 47[°]C and 80[°]C respectively. Assume fully developed flow, calculate overall heat transfer coefficient of flow
conditions of the heat exchanger. \bigcirc c. Calculate the overall heat transfer coefficient based on outer surface of a steel pipe K = 54 *W/mK* with inner and outer diameters as $25/mm$ and 35 mm respectively. The inside and outside heat transfer coefficients are 1200 *W*/m²*K* and 2000 *W*/m²*K* respectively. $(04 Marks)$ a. Discuss modes of condensation. $\langle \rangle$ (2) (04 Marks) b. Saturated steam at 90° C,and/70 kPa is condensed on outer surface of a 1.5 m long, 2.5 m diameter vertical tube maintained at uniform temperature σ \lesssim 70°C. Assuming film wise condensation, calculate the heat transfer rate on the tube surface: (08 Marks) c. A tube 13 mm in outer diameter and 1.5 m long is used to condense the steam at 40 kPa $(T_{sat} = 76^{\circ}C)$. Calculate the heat transfer coefficient for this tube in: (a) horizontal position (b) vertical position. Take average tube wall temperature as 52° C. \odot \odot (08 Marks) ---.;:.1 - .--_:\ *'\7rJ /,.,-),* a. State and explain Kirchoff's law of radiation. (02 Marks) b. A pipe carrying steam runs in a large room and exposed to air at 30° C. The pipe surface temperature is 200°C. Diameter of the pipe is 20 cm. If the total heat loss per metre length of the pipe is $\frac{3}{1.9193}$ kW/m, determine the emissivity to the pipe surface. $\frac{1}{1.919}$ (08 Marks) e. In an isothermal enclosure at uniform temperature two small surfaces A and B are placed . The irradiation to the surface by the enclosure is 6200 *W/m²*. The absorption rates by the *Iteration of the Iteration* of *Iteration I*¹ *L* $\frac{1}{2}$ surfaces A and B are 5500 *W/m*² and 620 *W/m*². When steady state is established, calculate \sim the following: -""'--../ ... (08 Marks)
	- (i) What are the heat fluxes to each surface? What are their temperatures?
	- (ii) Absorptivity of both surfaces.
	- (iii) Emissive power of each surface
	- (iv) Emissivity of each surface.

5

6

7

8

(10 Marks)

* * * * * 20f2