CBCS Scheme

USN	5	CMRIT LIBRARY	
		BANGALOPE - FEO OF	

15ME33

Third Semester B.E. Degree Examination, June/Jul 2018 Basic Thermodynamics

Time: 3 hrs. Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing one full question from each module.

- 2. Thermodynamics data hand book and steam tables are permitted.
- 3. Missing data may be assumed suitably.

Module-1

- a. What is the difference between intensive and extensive property? Give examples. (04 Marks)
 - b. What is Quasi static process? Explain its importance in engineering. (04 Marks)
 - c. On some temperature scale 0°C is equivalent to 100°B and 100°C is equivalent to 300°B. Determine the temperature in °C corresponding to 200°B. Convert the temperature obtained in °C to Fahrenheit and Kelvin scale.

 (08 Marks)

OR

- 2 a. Define work and heat in thermodynamics. Explain why neither is a property. (06 Marks)
 - b. Derive an equation for work in Isobaric and Isochoric processes. (04 Marks)
 - c. A piston compresses a gas in a cylinder during quasi equilibrium process. The pressure in the cylinder varies according to the relationship $PV^{1.4}$ = constant. Initial pressure in the cylinder is $101,325 \text{ N/m}^2$ and the initial volume of the cylinder is 0.01 m^3 . Compute the work in compressing the gas to a final volume of 0.005 m^3 .

Module-2

- a. Write the first law of thermodynamics equation for closed system undergoing a non cyclic process and show that internal energy is property. (06 Marks)
 - b. Write the steady flow energy equation for a single entry stream and single exit stream.

 Indicate the SI unit for each term. (04 Marks)
 - c. Steam expands through a turbine in a steady flow adiabatic process. The mass flow rate of the steam is 1.36 kg/s. The entering state of steam is 34.48 bar and 538°C, while the existing state is 6.896 bar and 294°C. Neglecting the changes in kinetic and potential energies, find the power output for the turbine. Assume C_p for steam as 2.01 kJ/kg K. (06 Marks)

OR

- 4 a. What is a Thermal Reservoir, give example? (02 Marks)
 - b. Show that the efficiency of a reversible heat engine is higher than a irreversible heat engine when both are working between same temperature limits. (06 Marks)
 - c. A heat engine receives half of its heat at a temperature of 1000K and the rest at 500K while rejecting heat to a sink at 300K. What is the maximum possible efficiency of this heat engine? (08 Marks)

Module-3

- 5 a. What is a reversed heat engine?
 - b. Mention the factors which render a process irreversible.

(02 Marks) (06 Marks)

c. The efficiency of the Carnot engine rejecting heat to a sink at 7°C is 32%. If the heat rejected to the sink is 16.66 kJ/s. What is the power developed by the engine? Also determine the source temperature. (08 Marks)

1 of 2

CMRIT LIBRARY BANGALORE - 560 037 OR

- 6 a. Derive the two Tds expressions for change in entropy of an Ideal gas. (08 Marks)
 - b. Water is heated from 25°C to 90°C as it flows at a rate of 0.5kg/s through a tube that is immersed in a hot bath at 100°C. Calculate heat transfer, entropy change for water, oil bath and universe.

 (08 Marks)

Module-4

7 a. What is available energy, un available energy?

(03 Marks)

b. Show that the Joule Thomson coefficient for a gas can be expressed as

$$\mu_{h} = \frac{1}{C_{p}} \left[T \left(\frac{\partial V}{\partial T} \right)_{p} - v \right].$$

(08 Marks)

c. Obtain an expression for availability of a non-flow process.

(05 Marks)

OR

- 8 a. With the help of P-T diagram define i) Triple point ii) Critical point. (06 Marks)
 - Use steam table to determine the unknown properties in the following: i) $P = 1 \text{ bar } v = 2.41 \text{ m}^3/\text{kg T} =$ _____
 - ii) $P = 1 \text{ MPa}, T = 150^{\circ}\text{C}, v =$ _____
 - iii) T = 100°C, $h_g = 2676 \text{ kJ/kg } P_s = ____$

 $P = 10 \text{ bar}, T = 250^{\circ}\text{C}, h =$

(04 Marks)

of expansion, what is the dryness fraction at the beginning. Also calculate the change in entropy during throttling.

(06 Marks)

Module-5

- 9 a. Derive the expressions for specific heat at constant pressure and constant volume for mixture of gases. (08 Marks)
 - b. A mixture of gases comprises 30% CO, 15% CO₂ and 55% H₂. Find the gravimetric analysis specific gas constant and molecular weight of the mixture. (08 Marks)

OR

- 10 a. Explain the following:
 - i) Reduced properties
 - ii) Law of corresponding state
 - iii) Gibbs-Daltons law
 - iv) Compressibility factor.

(08 Marks)

- b. 10 kg of Carbon dioxide is enclosed in a container at a temperature of 100°C and pressure of 1 bar. Compute the volume of the container by
 - i) Ideal gas equation
 - ii) Vander Walls equation
 - iii) Compressibility chart.

(08 Marks)

* * * * * CIVIRIT LIBRARY BANGALORE - 560 037