GBCS SCHEME

USN			CMRIT LIBRARY
USIN			BANGALORE - 568 037

15ME62

Sixth Semester B.E. Degree Examination, June/July 2018 Computer Integrated Manufacturing

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- 1 a. Define automation Distinguish between fixed and programmable automation with examples. (08 Marks)
 - b. State and explain the different reasons for automation.

(08 Marks)

OR

2 a. Explain upper bound and lower bound approach with respect to automated transfer lines.

(08 Marks)

b. The average part produced in a certain batch manufacturing plant must be processed through an average of 8 machines, 15 new batches are launched each week. Operating time is 8 min, average set up time is 8 hours, batch size is 30 minutes, average non-operation time is 15 hrs/machine. Number of machines available in the plant is 20. The plant operates on an average of 80 production hrs/week. Determine (i) manufacturing lead time (ii) production rate (iii) plant utilization (iv) Work-in-process. (08 Marks)

Module-2

3 a. State and explain the different steps in computer aided design process.

(08 Marks)

b. Explain the functions of a graphics package.

(08 Marks)

OR

- 4 a. Define computer aided process planning. With a block diagram explain variant approach type of CAPP system. (08 Marks)
 - b. What do you mean by material requirement planning (MRP)? What are MRP inputs and outputs? (08 Marks)

Module-3

- 5 a. Define flexible manufacturing system? List and explain the different types of flexibility.

 (08 Marks)
 - b. Explain in brief with diagram the structure of AS/RS system. What are the advantages of it?

 (08 Marks)

OR

- 6 a. Explain the terminology with formulas:
 - (i) Minimum rational work element
 - (ii) Cycle time (iii) Precedence constraints and precedence diagram.

(06 Marks)

BANGALORE - 560 03

- b. A project has the following tasks. Its immediate predecessor and task times are given below. Using largest candidate rule balance the line and determine
 - (i) Number of work stations
 - (ii) Balance delay of line and
 - (iii) Line efficiency

Take cycle time = 1 min

Take Cycle tillic	1 1	11111.		14	/							
Tasks	1	2	3.	64	5	6	7	8	9	10	11	12
Proceded by	-	- ,	1	1, 2	2	3	3	3, 4	6, 7, 8	5, 8	9, 10	11
T _e (min)	0.2	0.4	0.7	0.1	0.3	0.11	0.32	0.6	0.27	0.38	0.5	0.12

(10 Marks)

Module-4

With a sketch explain the classification of NC/CNC's system based on motion control (09 Marks) systems.

Write a manual part programme for machining the profile as shown in the Fig.Q7(b)?

OR

Explain with a neat sketch the robot configuration.

(07 Marks)

- Explain briefly with diagram if necessary?
 - (ii) Range sensors (iii) Advantages and disadvantages. (i) Slip sensors

(09 Marks)

Module-5

Explain briefly the different steps involved in additive manufacturing system. (08 Marks)

With a neat sketch, explain the working principle of selective laser sintering. Discuss the b. (08 Marks) advantages for it.

OR

Explain the components of Industry 4.0. 10

(08 Marks)

List and explain IOT applications in manufacturing.

(08 Marks)