CMRIT LIBRARY

First/Second Semester B.E. Degree Examination, June/July 2018 Elements of Civil Engineering and Engineering Mechanics

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least ONE question from each part.

Module-1

- 1 a. Explain the role of civil engineer in the infrastructural development of a country. (10 Marks)
 - b. Determine the components of the force F = 1500N along A A and B B axes. Refer Fig.Q1(b). (05 Marks)

Fig.Q1(b)

c. Replace the horizontal 600N force acting on the lever as shown on Fig.Q1(c) by an equivalent force-couple system to act at 0.

- 2 a. Discuss classification of roads based on material of construction and based on Nagpur road plan. (10 Marks)
 - b. A square ABCD has forces acting along its sides as shown in Fig.2(b). Find the values of P and Q, if the system reduces to a couple. Also find the magnitude of the couple if the side of the square is 2m. (05 Marks)

Fig.Q2(b)

c. Find the moment of 1000N force about points A, B, C and D as shown in Fig.Q2(c).

(05 Marks)

Fig.Q2(c)

CMRIT LIBRARY BANGALORE - \$60 027

Module-2

- 3 a. Define the following:
 - i) Resultant
 - ii) Law of parallelogram of forces
 - iii) Principle of resolved parts
 - iv) Composition of forces
 - v) Coplanar concurrent system.

(10 Marks)

b. Determine the magnitude, direction and position of the resultant along AB for the given system of forces shown in Fig.Q3(b). (10 Marks)

4 a. State and prove Varignon's principle of moment.

(08 Marks)

b. Two cables which have known tensions are attached to the top of pylon AB as shown in Fig.Q4(b). A third cable AC is used as a guy wire. Determine the tension in AC knowing that the resultant of the forces exerted at A by the three cables must be vertical. (06 Marks)

c. Two forces of magnitude P and Q act at a point on a body. When the angle between the forces is 90°, their resultant is $\sqrt{1000}$ N. When the angle between forces is 60°, their resultant is $\sqrt{1300}$ N. Determine the value of P and Q. (06 Marks)

Module-3

5 a. Two smooth spheres each of radius 100mm and weight 200N rests in a channel as shown in Fig.Q5(a), Determine the normal reactions at points A, B and C on the channel. (10 Marks)

Fig.Q5(a)

b. A beam ABCDEF is hinged at A, supported on rollers at E and carries loads as shown in Fig.Q5(b). Determine the reactions at the supports. (10 Marks)

Fig.Q5(b)

CMRIT LIBRARY
BANGALORE - 540 025

CMIT LIBRARY

(04 Marks)

State Columb's laws of dry friction.

A block of weight 2005 A block of weight 2000N is resting on an inclined plane which is inclined to horizontal at an angle of 45°. The block is connected by means of a string which passes over a frictionless pulley and to which an effort P is hung freely. Determine the minimum and maximum values of P for which the system is in equilibrium. The co-efficient of friction between the (08 Marks) surfaces of contact is 0.25. Refer Fig.Q6(b)

Fig.Q6(b)

A uniform beam AB hinged at A, is kept horizontal by supporting and settling a 400N weight with the help of a string tied at B and passing over smooth pulley at C. The bar weighs 200N. Determine the reactions at the support A and tension in the string. Refer (08 Marks) Fig.Q6(c).

Fig.6Q(c)

Module-4

State and prove parallel axis theorem.

(08 Marks)

Determine the Centriod of the concrete dam shown in Fig.Q7(b) with reference to given x (12 Marks) and y axis.

From first principles, determine the centriod of a semicircular area. 8

(08 Marks)

Find the moment of inertia of the section shown in Fig.Q8(b) about the centriodal x-x axis (12 Marks) and y-y axis.

BANGALORE - 560 037

14CIV13/23

Module-5

- 9 a. What is a projectile? Define the following terms briefly with general equations where-ever possible i) Angle of projection ii) Time of flight iii) Horizontal range iv) maximum height attained by the projectile. (10 Marks)
 - b. A bullet moving at the rate of 300m/sec is fired into a thick wood penetrates up to 500mm. If it is fired into a 250mm thick target, find the velocity of emergence. Take the resistance to be uniform in both the cases.

 (10 Marks)
- 10 a. A particle, starting form rest, moves in a straight line, whose equation of motion is given by $S = 5t^3 3t^2 + 6$. Find the displacement, velocity and acceleration of the particle after 5 seconds. S is in meters. (04 Marks)
 - b. A particle is projected in air with a velocity of 120 m/sec at an angle of 30° with the horizontal. Determine i) the horizontal range ii) maximum height reached by the particle and iii) the time of flight.

 (08 Marks)
 - c. A stone is dropped from the top of a building 100m high. At the same time another stone is thrown upwards from the foot of the building with a velocity of 50m/sec. When and where the two stones cross each other?

 (08 Marks)

CMRIT LIBRAR