CBCS Scheme

USN				CMRIT LIBRARY BANGALORE - 560 037	15ELN15/25
				BUMPATOME - 200 02	

First/Second Semester B.E. Degree Examination, June/July 2018 Basic Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- i) Ideal-diode approximation ii) Practical diode approximation 1 iii) Piece-wise linear approximation of diode.
 - Draw the circuit of full-wave rectifier and derive the expression for average dc current IDC, (08 Marks) RMS load current I_{RMS}.
 - Calculate the output voltage V₀ in the following circuit:

Fig.Q.1(c)

Assume V_r (breakdown V_g of G_e) = 0.7V Assume V_r (breakdown V_g of silicon) = 0.3V.

(02 Marks)

(06 Marks)

OR

- Draw the common Emitter circuit and sketch the output characteristics, explain active 2 region, cut off region and saturation region by indicating them on the characteristic curve.
 - A transistor has $I_B = 100 \mu A$ and $I_C = 2 m A$. Find: i) β of the transistor ii) α of the transistor iii) Emitter current I_E iv) If I_B changes by +2sµA and I_C changes by +0.6mA. Find the new (08 Marks) value of β.

Module-2

- Sketch a base-bias circuit and write equations for I_B, I_C and V_{CE}. (04 Marks)
 - A voltage divider bias circuit with a 25V supply has $R_C = 4.7~\text{K}\Omega,~R_E = 3.3~\text{K}\Omega,~R_1 = 33\text{K}\Omega,$ R_2 = 12K Ω and h_{FE} = 50. Use the approximate analysis method to calculate the V_{CE} level. (08 Marks)
 - Derive the output equation for non-inverting amplifier using op-amp.

OR

- Define the terms. If Siew rate ii) CMRR iii) Common mode gain Ac. a.
 - Design an adder circuit using op-amp to obtain an output expression $V_0 = -(0.1V_1 + 0.5V_2 + 0.5V_3)$ b. 20V₃) where V_1 , V_2 and V_3 are the inputs select $R_f = 10K\Omega$. (06 Marks)
 - Write any four Ideal-opamp characteristics.

(04 Marks)

(04 Marks)

Module-3

5 a. Convert the following binary numbers to oct	al number system:
--	-------------------

ii) 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1. i) 1 0 1 1 . 1 1 1 1

(04 Marks)

With a neat diagram, explain the concept of digital waveform.

(06 Marks)

Subtract (1000.01)₂ from (1011.10)₂ using 1's and 2's complement method.

(06 Marks)

OR

State and prove De-Morgan's theorem.

(04 Marks)

Simplify the following Boolean expressions:

 $AB + \overline{AC} + A\overline{BC}(AB + C)$ i)

 $\overline{AB} + \overline{ABC} + \overline{A(B+AB)}$.

(06 Marks)

Realize full adder circuit using NAND gate.

(06 Marks)

Module-4

Explain the working of clocked R-S flip flop with a suitable circuit, symbol, truth-table, input output waveforms considering positive edge triggered RS flip-flop.

With a neat block diagram, explain how stepper motor is interfaced to 8051 microcontroller.

(08 Marks)

OR

With a neat diagram, explain flag register of 8051 microcontroller.

(06 Marks)

Differentiate between latches and flip-flops.

(04 Marks)

Draw the TMOD register and explain how it control the modes of operation of a timer in (06 Marks) 8051 microcontroller.

Module-5

- Define amplitude modulation and derive the expression for standard amplitude modulation. Also define modulation index.
 - A broadcast transmitter radiates 20kW when the modulation percentage is 75. How much of this is carrier power? Also calculate the power of each sideband. (06 Marks)
 - c. Distinguish between frequency modulation and amplitude modulation.

(04 Marks)

OR

- With a neat diagram, explain the construction and operation of LVDT. Also mention its 10 advantages and disadvantages.
 - b. An FM signal is given as $V = 12 \sin(5 \times 10^3 t + 5 \sin 1250 t)$. Calculate: i) Carrier frequency ii) Modulating frequency iii) Frequency deviation. (06 Marks)

AMPIT LIBRARY

2 of 2

UMPIT LIBRAK