

17MAT11

First Semester B.E. Degree Examination, June/July 2018 **Engineering Mathematics – I**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

Find the nth derivative of $\frac{x}{(x+1)(2x-3)}$ 1

Prove that the curves $r^n = a^n \cos n\theta$ and $r^n = b^n \sin n\theta$ intersects orthogonally. (07 Marks)

Find the Pedal equation of the curve $r = a(1 + \cos \theta)$.

(07 Marks)

(06 Marks)

If $x = \tan y$ prove that $(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$. (06 Marks) 2

(07 Marks)

With usual notation, prove that $\tan \phi = r \frac{d\theta}{dr}$.

(07 Marks)

Find the radius of curvature of the curve $y^2 = \frac{a^2(a-x)}{x}$ at the point (a, 0)

 $\frac{\text{Module-2}}{\text{Find the Taylor's series of loge } x \text{ about } x = 1 \text{ upto the term containing fourth degree.}$

(06 Marks)

b. If $u = \sin^{-1} \left[\frac{x^2 y^2}{x + y} \right]$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3 \tan u$.

(07 Marks)

c. If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at (1, -1, 0).

a. Evaluate $\lim_{x \to 0} \left(\frac{a^x + b^x + c^x + d^x}{4} \right)^{\frac{1}{x}}$. (07 Marks)

4 a. Evaluate
$$\lim_{x \to 0} \left(\frac{a^x + b^x + c^x + d^x}{4} \right)^{1/x}.$$

(06 Marks)

Find the Maclaurin's expansion of $\sqrt{1+\sin 2x}$ upto fourth degree term. (07 Marks)

c. If
$$u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$$
 prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$ (07 Marks)

A particle moves along the curve $\frac{\text{Module-3}}{\vec{r} = (t^3 - 4t)\hat{i} + (t^2 + 4t)\hat{j} + (8t^2 - 3t^3)\hat{k}}$ where t denotes 5 time. Find the velocity and acceleration at t = 2.

 $\vec{f} = (x + y + az)\hat{i} + (bx + 2y - z)\hat{j} + (x + cy + 2z)\hat{k}$ is irrotational find a, b, c. Hence find the scalar potential ϕ such that $\overrightarrow{f} = \nabla \phi$. (07 Marks)

Prove that curl (grad ϕ) = 0.

(07 Marks)