USN					CMRIT LIBRA	10PHY12/2
	1				BANCALODE COM	

First/Second Semester B.E. Degree Examination, June/July 2018 Engineering Physics

			Engineerin	g Physics		
Time:	3 hr	S.			Max.	Marks:100
Note:	2. Ph Eld lig	ysical constants ectron charge e	full questions, choo : Planck's constan = 1.6 × 10 ⁻¹⁹ C, Elec /s , Neutron mass	$t h = 6.63 \times 10^{-34} J$ - $tron\ mass\ m = 9.11$	·S , l ×10 ⁻³¹ kg , Ve	elocity of $10^{-12}Fm^{-1}$,
			P	ART - A		
1 8		According to Wei	swers for the following in's law, the waveleng	ng : th of maximum inter		(04 Marks)
		A) $\lambda_m \alpha T$	B) $\lambda_m \alpha \frac{1}{T}$	C) $\lambda_m \alpha T^4$	D) $\lambda_m \alpha$	$\frac{1}{T^4}$
	(iii)	A) 0.0012nm The wave nature A) Photoelectric C) Raman effect The momentum of	associated with electric effect of a free particle carry	C) 1.226 nm ons in motion was ve B) Compton e D) Diffraction ing energy E and ma	D) 12.26 erified by effect a by Crystals ss m is	
₩ <u>,</u>	- 3371	A) 2mE	B) $\sqrt{2}$ mE liation law? Show ho	C) 2√mE	D) m ² E	
ľ		iat is Planck's rac	nation law? Show no	w well s law and r	Layleigh — Joan	(06 Marks)
(ve? Derive an expres	ssion for de – Brog	lie wavelength	
	vel	ocity concept.			Carlly .	(06 Marks)
(d. Fin	d the energy of the	e neutron i.e eV whos	e de – Broglie wavel	ength is IA'.	(04 Marks)
2 8	a. Ch i)	oose the correct ar The Product of U A) $\Delta x \Delta p \ge \lambda$	is swers for the following for the following for the following for the following and the following for the following fo	position and moment	tum is given by mv D) $\Delta x \Delta p$	(04 Marks) $\geq \frac{h}{4\pi}$
	ii)	A) within the	of locating a particle is	s maximum B) at the node	es of the wave p	
	iii)	potential well is A) excited state C) meta stable	esponding to the first called e state energy	B) zero point of D) none of these	el for a particle i energy se	
	iv)	is A) 1(nm) ⁻¹	11/1	C) $\sqrt{2} (nm)^{-1}$	the normalizat D) zero	ion constant
l	o. Set	up time independ ow that electrons of	ent Schrodinger wave annot exist in the nuc	equation. leus of an atom.		(06 Marks) (06 Marks)

(04 Marks)

d. An electron is bound in one dimensional box of width 0.16nm. Find the energy values in the

ground state and first excited state.

		BANGALORE - 560		101 111 12/22
3	a. Choose the correct answ	vers for the following:	A. 6.	(04 Marks)
	i) Specific heat of 1 m	ole of electron gas under		D) 3 D
	A) $\frac{3}{5}$ R	B) $\frac{R}{2}$	C) 3R	D) $\frac{3}{2}$ R
	ii) The expression of e	lectrical resistivity Pis		
	A) $\frac{ne^2\tau}{m}$	B) $\frac{m}{ne^2\tau}$	C) $\sqrt{\frac{ne^2\tau}{m}}$	D) $\sqrt{\frac{m}{ne^2\tau}}$
	iii) The fermi factor fo	$r E = E_f at T > 0 K is$		
		2	C) 0	D) 2
	A) continuous	tum free electron theory, to B) discrete C	(a) overlapping	D) none
	b. Using the free electron	theory, derive an express	ion for electrical con	ductivity in metals. (06 Marks)
	c. Discuss the probability	of occupation of various	s energy states by e	lectron by $T = 0^0 K$ and
	$T > 0^{\circ}K$ on the basis of	termi factor.		(00 Marks)
	d. Find the temperature a	t which there is 1.0% pr	obability that a state	e with an energy 0.5eV
	above fermi energy wil	l be occupied.		(04 Marks)
,	a. Choose the correct ans	ware for the following:		(04 Marks)
4	a. Choose the correct ans			
G	A) Independent	of temperature	B) Increases with t	emperature (S)
1	C) Decreases w	ith temperature	D) None of these	<u> </u>
	ii) For Ferromagnetic	substance, the Curie – W	eiss law is given by	D) V
J.	A) $X = \frac{C}{T}$	substance, the Curie – W B) $X = \frac{C}{(T - \theta)}$	C) $X = \frac{(1-0)}{C}$	D) $\chi = \frac{C}{(\Gamma + \theta)}$
	iii) The Polarisation th	nat occurs in the frequency	y range 10^{12} H ₂ is	
	A) ionic	B) electronic	C) orientation	D) space charge
	iv) Sulphur is an elem	ental solid dielectric of at	comic weight 32.07	nd density 2.07 ×10 ³
	kg/m^3 . The number	r of atoms per unit volume	e for sulphur is $0.3 \times 10^{24} \text{ m}^3$	D) None of these
	A) 3.89×10^{-7} m ⁻¹ b. What is Internal field	B) 3.89×10^{25} /m ³ C)	or internal field in C	
	array of atoms in diele	etric solids.		(08 Marks)
	a Write note on Ferroele	ctrics	(P)	(04 Marks)
	d. An elemented solid di	ielectric material has Pol	larizability 7×10^{-40}	$F - m^2$. Assuming the
		rentz field. Calculate the	dielectric constant is	or the material, it it has (04 Marks)
	3×10^{28} atoms/m ³ .		7	(04 Marks)
		PART	- B	
5	a. Choose the correct ans			(04 Marks)
	,	on in diode laser is by	D) Electric dischar	~~
	A) Optical pumpC) Reverse bias	oing	B) Electric dischargeD) Forward bias	ge
	C) Reverse bias ii) The distribution of	number of atoms is differ		states is governed by
	A) Fermi – Dirac		B) Maxwell – Bolt	tzmann distribution
	C) Bose – Einste		D) None of these	
		e meta stable is about	C) 10^2 sec	D) 10 ⁻⁹
	A) 10 ⁻³	B) 10 ⁻¹³		<i>D)</i> 10
	1.60	CMRIT LIDRA	N1 137	
		BANGALORE - 560 2 of	4	

10PHY12/22

		iv) Image is stored on a	hologram in the form	of O	
		A) Interference pa		Diffraction patte	ern
		C) Photography	D	None of these	
	b.	Explain the terms spontar	neous emission and stir	nulated emission.	(04 Marks)
	c.	Describe the construction	n of He – Ne laser and	explain its working,	
		diagrams.	(2)		(08 Marks)
	d.	A pulse laser has an ave	rage power output 1.5r	nw per pulse and pu	lse duration is 20ns. The
			ed per pulse is estimat	ed to be $1.047 \times 10^{\circ}$	Find the wavelength of
		the emitted laser.			(04 Marks)
		~1	1 (11		(04 Mayles)
6	a.	Choose the correct answ		A	(04 Marks)
			behaves like a Perfect	C) Diamagnet	D) None of these
		A) Paramagnet ii) The critical tempera	B) Ferro magnet	C) Diamagnet	D) None of these
		ii) The critical tempera A) 4.2 K	B) 2.4 K	C) 6.2 K	D) 7.8 K
		The state of the s	gnetic flux is given by	C) 0.211	-,
		V 16/1		C) h	D) $\frac{2\pi h}{h}$
		A) 2h	B) $\frac{h}{2e}$	$\frac{1}{2\pi e}$	D) — e
		ive The attenuation of a		expressed in	
		A) ohm/km	B) watt/km	C) decibel/km	D) joule/km
(b.	Define Super conductivi	ty and explain Type – I	and Type – II super	conductors. (06 Marks)
1	C.	Describe different types	of optical fibres, with r	neat diagrams.	(06 Marks)
3	d.	The attenuation of light	in an optical fiber is	3.6 dB/km. What f	ractional initial intensity
7		remains after 1km?			(64 Marks)
7	a.	Choose the correct answ	ers for the following:	a constant in ECC a	(04 Marks)
		i) The relation between	atomic radius and lattic	ce constant in FCC's	tructure is
		A) $a = 2r$	B) $a = 2\sqrt{2} r$	C) $a = \frac{\sqrt{3} \text{ r}}{4}$	(a) $a = \frac{4r}{\sqrt{3}}$
		ii) Which of the following		111 100	
			ing crystal structure is r		
		A) Simple cubic		B) Body centered	cubic
		A) Simple cubicC) Face centered of	eubic	B) Body centered D) None of these	cubic
		C) Face centered of	cubic cing in a crystal is 1A ⁰ a	D) None of these	cubic
		C) Face centered ciii) The inter planar space	cing in a crystal is $1 { m A}^0$ and to take place, the wa	D) None of these and the glancing ang velength of X – rays	cubic le is 35 ⁰ . For the first is
		C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰	cing in a crystal is $1A^0$ and to take place, the wall B) $0.573A^0$	D) None of these and the glancing ang velength of X – rays (3) 1.638A ⁰	cubic le is 35°. For the first is D) 0.819A°
		C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic dis	on to take place, the war B) 0.573A° tance between the sodi	D) None of these and the glancing ang velength of X – rays C) 1.638A ⁰ um and chlorine ator	le is 35°. For the first is D) 0.819A° ms in sodium crystal is
	۰	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic dis A) 5.51A ⁰	cing in a crystal is $1A^0$ and to take place, the wa B) $0.573A^0$ tance between the sodii B) $5.62A^0$	D) None of these and the glancing ang velength of X – rays C) 1.638A ⁰ um and chlorine ator C) 6.62A ⁰	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A°
	b.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic dis A) 5.51A ⁰ Derive Bragg's law for X	cing in a crystal is $1A^0$ and to take place, the wa B) $0.573A^0$ tance between the sodil B) $5.62A^0$ CX – ray diffraction in cr	D) None of these and the glancing ang velength of X – rays C) 1.638A ⁰ um and chlorine ator C) 6.62A ⁰ lystals.	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks)
	b. c.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic distant A) 5.51A ⁰ Derive Bragg's law for X Define Coordination number of the interest of the intere	on to take place, the wan been to take place, the wan been to take place, the wan been to take place, the want between the sodily and been to take between the sodily and been and atomic packing the packing the place of the pla	D) None of these and the glancing ang velength of X – rays C) 1.638A ⁰ um and chlorine ator C) 6.62A ⁰ lystals.	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks) the packing factor for SC,
	c.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic dist A) 5.51A ⁰ Derive Bragg's law for 2 Define Coordination number of the properties	cing in a crystal is $1A^0$ and to take place, the was B) $0.573A^0$ tance between the soding B) $5.62A^0$ CX – ray diffraction in crumber and atomic packing.	D) None of these and the glancing ang velength of X – rays C) 1.638A ⁰ um and chlorine ator C) 6.62A ⁰ I systals.	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks) the packing factor for SC, (08 Marks)
	c.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic distance A) 5.51A ⁰ Derive Bragg's law for X Define Coordination num BCC and FCC structures Copper has FCC structures	cing in a crystal is $1A^0$ and to take place, the was B) $0.573A^0$ tance between the sodium B) $5.62A^0$ CX – ray diffraction in crystal atomic packings.	D) None of these and the glancing ang velength of X – rays C) 1.638A ⁰ um and chlorine ator C) 6.62A ⁰ I systals.	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks) the packing factor for SC, (08 Marks)
	c.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic dist A) 5.51A ⁰ Derive Bragg's law for 2 Define Coordination number of the properties	cing in a crystal is $1A^0$ and to take place, the was B) $0.573A^0$ tance between the sodium B) $5.62A^0$ CX – ray diffraction in crystal atomic packings.	D) None of these and the glancing ang velength of X – rays C) 1.638A ⁰ um and chlorine ator C) 6.62A ⁰ I systals.	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks) the packing factor for SC, (08 Marks) Calculate the inter planor
	c.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic distance A) 5.51A ⁰ Derive Bragg's law for X Define Coordination num BCC and FCC structures Copper has FCC structures	cing in a crystal is $1A^0$ and to take place, the was B) $0.573A^0$ tance between the sodium B) $5.62A^0$ CX – ray diffraction in crystal atomic packings.	D) None of these and the glancing ang velength of X – rays C) 1.638A ⁰ um and chlorine ator C) 6.62A ⁰ I systals.	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks) the packing factor for SC, (08 Marks) Calculate the inter planor
	c.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic distance A) 5.51A ⁰ Derive Bragg's law for X Define Coordination num BCC and FCC structures Copper has FCC structures	cing in a crystal is $1A^0$ and to take place, the war B) $0.573A^0$ tance between the sodium B) $5.62A^0$ CX – ray diffraction in crypton and atomic packings. The planes are some control of the sodium of the so	D) None of these and the glancing ang velength of X – rays C) 1.638A ⁰ um and chlorine ator C) 6.62A ⁰ I systals. In a factor. Calculate the dius is 0.1278nm.	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks) the packing factor for SC, (08 Marks) Calculate the inter planor
	c.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic distance A) 5.51A ⁰ Derive Bragg's law for X Define Coordination num BCC and FCC structures Copper has FCC structures	cing in a crystal is $1A^0$ and to take place, the war B) $0.573A^0$ tance between the sodium B) $5.62A^0$ CX – ray diffraction in crymber and atomic packing. Lure and the atomic radius planes. CMRITLIB	D) None of these and the glancing ang velength of X – rays C) 1.638A° um and chlorine ator C) 6.62A° I systals. In a factor. Calculate the dius is 0.1278nm.	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks) the packing factor for SC, (08 Marks) Calculate the inter planor
	c.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic distance A) 5.51A ⁰ Derive Bragg's law for X Define Coordination num BCC and FCC structures Copper has FCC structures	cing in a crystal is $1A^0$ and to take place, the war B) $0.573A^0$ tance between the sodium B) $5.62A^0$ CX – ray diffraction in crypton and atomic packings. The planes are some control of the sodium of the so	D) None of these and the glancing ang velength of X – rays C) 1.638A° um and chlorine ator C) 6.62A° I systals. In a factor. Calculate the dius is 0.1278nm.	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks) the packing factor for SC, (08 Marks) Calculate the inter planor
	c.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic distance A) 5.51A ⁰ Derive Bragg's law for X Define Coordination num BCC and FCC structures Copper has FCC structures	cing in a crystal is $1A^0$ and to take place, the war B) $0.573A^0$ tance between the sodium B) $5.62A^0$ CX – ray diffraction in crymber and atomic packing. Lure and the atomic radius planes. CMRITLIB	D) None of these and the glancing ang velength of X – rays C) 1.638A° um and chlorine ator C) 6.62A° I systals. In gractor. Calculate the dius is 0.1278nm. C	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks) the packing factor for SC, (08 Marks) Calculate the inter planor
	c.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic distance A) 5.51A ⁰ Derive Bragg's law for X Define Coordination num BCC and FCC structures Copper has FCC structures	cing in a crystal is $1A^0$ and to take place, the war B) $0.573A^0$ tance between the soding B) $5.62A^0$ CX – ray diffraction in crymber and atomic packing. Lure and the atomic race at a constant race and the atomic race at a constant race and the atomic race at a constant ra	D) None of these and the glancing ang velength of X – rays C) 1.638A° um and chlorine ator C) 6.62A° I systals. In gractor. Calculate the dius is 0.1278nm. C	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks) the packing factor for SC, (08 Marks) Calculate the inter planor (04 Marks)
	c.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic distance A) 5.51A ⁰ Derive Bragg's law for X Define Coordination num BCC and FCC structures Copper has FCC structures	cing in a crystal is $1A^0$ and to take place, the war B) $0.573A^0$ tance between the soding B) $5.62A^0$ CX – ray diffraction in crymber and atomic packing. Lure and the atomic race at a constant race and the atomic race at a constant race and the atomic race at a constant ra	D) None of these and the glancing ang velength of X – rays C) 1.638A° um and chlorine ator C) 6.62A° I systals. In gractor. Calculate the dius is 0.1278nm. C	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks) the packing factor for SC, (08 Marks) Calculate the inter planor (04 Marks)
	c.	C) Face centered of iii) The inter planar space order Bragg reflection A) 1.147A ⁰ iv) The inter atomic distance A) 5.51A ⁰ Derive Bragg's law for X Define Coordination num BCC and FCC structures Copper has FCC structures	cing in a crystal is $1A^0$ and to take place, the war B) $0.573A^0$ tance between the soding B) $5.62A^0$ CX – ray diffraction in crymber and atomic packing. Lure and the atomic race at a constant race and the atomic race at a constant race and the atomic race at a constant ra	D) None of these and the glancing ang velength of X – rays C) 1.638A° um and chlorine ator C) 6.62A° I systals. In gractor. Calculate the dius is 0.1278nm. C	cubic le is 35°. For the first is D) 0.819A° ms in sodium crystal is D) 2.81A° (04 Marks) the packing factor for SC, (08 Marks) Calculate the inter planor (04 Marks)

CMRIT LIBRAKY BANGALORE - 560 037

8	a. Choose the correct answers for the following:	(04 Marks)
	i) In a carbon nanotube, the bond between the carbon atom is	
	A) metalic B) ionic (C) hydrogen D) covale	ent
	ii) The Ultrasonic waves are sound waves having	
	A) Velocity greater than 330 ms ⁻¹ B) Velocity less than 330 ms ⁻¹	
	C) Frequency greater than 20 KHz D) Frequency less than 20 KHz	
	iii) The ultrasonic waves are produced by	
	A) Electromagnetic induction B) Electric tuning fork	
	C) piezo electric effect D) Inverse piezo electric effect	
	iv) A constant testing of product without causing any damage is called	
	A) minute testing B) destructive testing	
	C) non – destructive testing D) random testing	
	b. Explain Carbon nanotubes and its application by giving their physical properties.	(08 Marks)
	c. Describe a method of measuring velocity of ultrasonic waves in liquids.	(08 Marks)

CMRIT LIDRARY