Time: 3 hrs.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

First Semester B.E. Degree Examination, Dec.2018/Jan.2019

Engineering Mathematics - I

Max. Marks: 100

Note: Answer any FIVE full questions, selecting ONE full question from each module.

Module-1

Find the nth derivative of $y = e^{ax} \sin(bx + c)$.

(06 Marks)

- Find the angle of intersection between the curves $r = a(1 + \cos\theta)$, $r = b(1 \cos\theta)$. (07 Marks)
- Find the radius of curvature of the curve $a^2y = x^3 a^3$ at the point where the curve cuts the (07 Marks) x-axis.
- a. If $y = tan^{-1}x$ then prove that $(1+x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$. (06 Marks)
 - b. Find the pedal equation of $\frac{2a}{r} = 1 + \cos\theta$. (07 Marks)
 - Find the radius of curvature of the curve $r = a(1 \cos \theta)$.

(07 Marks)

- a. Using Maclaurin's series, prove that $\sqrt{1+\sin 2x} = 1 + x \frac{x^2}{2} \frac{x^3}{6} + \frac{x^4}{24} + \dots$ (06 Marks) 3
 - b. If $u = \sin^{-1} \left[\frac{x^3 + y^3}{x + y} \right]$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u$. (07 Marks)
 - c. If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$ find $J\left(\frac{u, v, w}{x, v, z}\right)$. (07 Marks)
- a. If $Z = e^{ax + by} f(ax by)$ prove that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$. (06 Marks)
 - b. Evaluate $\lim_{x\to 0} \left| \frac{1}{x^2} \frac{1}{\sin^2 x} \right|$ (07 Marks)
 - Find the extreme values of the function $f(x,y) = x^2 + 2xy + 2y^2 + 2x + y$. (07 Marks)

A particle moves on the curve $x = 2t^2$, $y = t^2 - 4t$, z = 3t - 5, where 't' is the time. Find the components of velocity and acceleration at time t=1 in the direction of $|\hat{i}-3\hat{j}+2\hat{k}|$.

(06 Marks)

- Using differention under integral sign, evaluate $\int_{-\infty}^{\infty} \frac{e^{-ax} \sin x}{x} dx$. (07 Marks)
- (07 Marks) Show that div(curl A) = 0
- a. If $\vec{v} = \vec{w} \times \vec{r}$, prove that curl $\vec{v} = 2\vec{w}$ where \vec{w} is a constant vector. (06 Marks)
 - Find div \vec{F} and curl \vec{F} , where $\vec{F} = \nabla(x^3 + y^3 + z^3 3xyz)$. (07 Marks)
 - Trace the curve $y^2(a-x) = x^3$, a > 0. (07 Marks)

Module-4

7 a. Obtain reduction formula for $\int \sin^n x dx$.

(06 Marks)

b. Solve $(e^y + y\cos xy)dx + (xe^y + x\cos xy)dy = 0$.

(07 Marks)

- c. Find orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$ where λ is the parameter. (07 Marks)
- 8 a. Evaluate $\int_{0}^{1} x^{5} (1-x^{2})^{5/2} dx$.

(06 Marks)

b. Solve $x \frac{dy}{dx} + y = x^3 y^6$.

(07 Marks)

c. A body originally at 80°C cools down at 60°C in 20 minutes, the temperature of the air being 40°C. What will be the temperature of the body after 40 minutes from the original?

(07 Marks)

Module-5

9 a. Find the rank of the matrix

 $A = \begin{bmatrix} 1 & 0 & -3 & -1 \\ 0 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$

(06 Marks)

b. Diagonalize the matrix $A = \begin{bmatrix} -5 & 9 \\ -6 & 10 \end{bmatrix}$.

(07 Marks)

- c. Reduce the quadratic form $2x^2 + y^2 + z^2 + 2xy 2xz 4yz$ to canonical form. Hence find its rank, index and signature. (07 Marks)
- 10 a. Solve x + y + z = 9, 2x + y z = 0, 2x + 5y + 7z = 52 by Gauss elimination method.

(06 Marks)

- b. Show that, the transformation $y_1 = 2x_1 + x_2 + x_3$, $y_2 = x_1 + x_2 + 2x_3$, $y_3 = x_1 2x_3$ is regular transformation and find the inverse transformation. (07 Marks)
- c. Find the largest eigen value and the corresponding eigen vector of the following matrix by using power method

 $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$

CMRIT LIBRARY BANGALORE - 560 037

Taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as initial eigen vector. Take five iterations.

(07 Marks)

* * * *