USN

First Semester B.E. Degree Examination, Dec.2018/Jan.2019

Engineering Mathematics - I

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, choosing at least TWO from each part. PART - A

Choose the correct answers for the following:

- - The nth derivative of coshax is

A)
$$\frac{a^n}{2} \left[e^{ax} + (-1)^n e^{-ax} \right]$$

B)
$$\frac{a^n}{2} \left[e^{ax} - (-1)^n e^{-ax} \right]$$

C)
$$\frac{a^n}{2} \left[e^{-ax} + (-1)^n e^{ax} \right]$$

D)
$$\frac{a^n}{2} \left[e^{-ax} - (-1)^n e^{ax} \right]$$

If f(x) is continuous in [a, b], differentiable in (a, b) and f(a) = f(b), then there exists at least one value c of x in (a,b) such that f'(c) =

A)
$$\frac{f(b)-f(a)}{b-a}$$
 B) $\frac{f(a)+f(b)}{a+b}$

B)
$$\frac{f(a) + f(b)}{a + b}$$

- D) None of these
- iii) If f(x) is continuous in [a, b], differentiable in (a, b) and f'(x) > 0 for all x in (a, b), then f(x) is
 - A) Strictly decreasing

- B) Strictly increasing
- C) Neither increasing nor decreasing
- iv) Maclauirin's series expansion of cosx is

A)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

C) $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$

B)
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
D) $x + \frac{x^3}{3!} + \frac{x^5}{3!} + \dots$

C)
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

D)
$$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

(04 Marks)

- If $y = e^{tan^{-1}x}$ prove that $(1 + x^2) y_{n+2} + (2n + 2x 1) y_{n+1} + n(n+1) y_n = 0$.
- Using Lagrange's mean value theorem, prove that $\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}b \sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}}$ where (06 Marks) a < b < 1.
- Expand logcosx about $x = \pi/3$ using Taylor's series up to the fourth degree terms. (06 Marks)
- Choose the correct answers for the following:

i) Lt
$$\frac{Secx-1}{\tan^2 x}$$
 is equal to

B)
$$-2$$

ii) The angle between radius vector and tangent of $r = ae^{\theta \cot \alpha}$ is

A)
$$\pi/2 - \theta$$

$$C)$$
 θ

D)
$$\pi/2$$

iii) The radius of curvature of the curve $pa^2 = r^3$ is

A)
$$\frac{a^2}{3r}$$

B)
$$\frac{a^2b^2}{p^3}$$

C)
$$\frac{a^3}{3}$$

D)
$$\frac{ab}{p}$$

iv) Pedal equation of the curve $r = a(1 + \cos\theta)$ is

A)
$$r^2 = 2ap^3$$
 B) $r = 3ap$

B)
$$r = 3ar$$

C)
$$r^3 = 2ap$$

D)
$$r^3 = 2ap^2$$
 (04 Marks)

b.	Evaluate $\underset{x \to 0}{\text{Lt}} \frac{\tan x - x}{x^2 \tan x}$.		((04 Marks)
c.	Show that the pedal equation of the curve $r^n = a^n$	$\sin \theta + b^n \cos \theta$ is $P^2(a)$	$a^{2n} + b^{2n}) = r^2$	2n+2
d.	Find the radius of curvature for the curve $xy^2 = a^2$		(0	6 Marks) 6 Marks)
a.	Choose the correct answers for the following: i) If $f(x, y) = \frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{x^3 + y^3}$, then $x \frac{\partial f}{\partial x} + y - \frac{\partial f}{\partial x}$	$\frac{\partial f}{\partial y}$ is	(0	4 Marks)
	A) 0 B) 3f ii) If $x = r\cos\theta$, $y = r\sin\theta$ then $\frac{\partial(x,y)}{\partial(r,\theta)}$ is	C) f	D) -3f	
	A) 1 B) r	C) $\frac{1}{r}$	D) 0	
	iii) If an error of 1% is made in measuring its base of a triangle is A) 0.2% B) 1% iv) If $r = f_{xx}$ (a, b), $s = f_{xy}$ (a, b), $t = f_{yy}$ (a, b) then A) $f_x = 0$, $f_y = 0$, $rt - s^2 > 0$ and $r > 0$ C) $f_x = 0$, $f_y = 0$, $rt - s^2 = 0$, $r > 0$	C) 2% In $f(x, y)$ will have max B) $f_x = 0$, $f_y = 0$, rt –	D) 0 simum at (a, $s^2 > 0$ and r	b) if < 0
b.	If $u = tan^{-1}(y/x)$ where $x = e^{t} - e^{-t}$ and $y = e^{t} + e^{-t}$	find $\frac{du}{dt}$.		(04 Marks)
	A rectangular box, open at the top, is to have a		ita Find the	dimension
c.	of the box requiring least material for its constru	ction.	nts. Find the	(06 Marks)
c. d.	of the box requiring least material for its construction. The focal length f of a lens is given by $\frac{1}{f} = \frac{1}{p}$	ction.) "	(06 Marks)
	of the box requiring least material for its construction	ection. $\frac{1}{q}$, where p and q are a certain lens, p and a	the distances	(06 Marks) s of the len
	of the box requiring least material for its construction. The focal length f of a lens is given by $\frac{1}{f} = \frac{1}{p} + \frac{1}{p}$ from the object and the image respectively. For possible maximum error of 0.5cm. Find the maximum choose the correct answers for the following:	ection. $\frac{1}{q}$, where p and q are a certain lens, p and a	the distances	(06 Marks) s of the len come with
d.	of the box requiring least material for its construct. The focal length f of a lens is given by $\frac{1}{f} = \frac{1}{p} + \frac{1}{p}$. from the object and the image respectively. For possible maximum error of 0.5cm. Find the maximum error of 0.5cm. Find the maximum error of the following: i) If div $\vec{F} = 0$ then \vec{F} is called A) Solenoidal vector C) Rotational vector	ection. $\frac{1}{q}$, where p and q are a certain lens, p and a	the distances	(06 Marks) s of the len come with
d.	of the box requiring least material for its construction. The focal length f of a lens is given by $\frac{1}{f} = \frac{1}{p} + \frac{1}{p}$ from the object and the image respectively. For possible maximum error of 0.5cm. Find the maximum error of the following: i) If div $\vec{F} = 0$ then \vec{F} is called A) Solenoidal vector	ection. 1/q, where p and q are a certain lens, p and a mum error in f.	the distances	(06 Marks) s of the len come with
d.	of the box requiring least material for its construction. The focal length f of a lens is given by $\frac{1}{f} = \frac{1}{p} + \frac{1}{p}$ from the object and the image respectively. For possible maximum error of 0.5cm. Find the maximum err	etion. 1, where p and q are q a certain lens, p and q amum error in f. B) Irrotational vector D) None of these.	the distances q are each 20	(06 Marks) s of the len coms with (06 Marks)
d.	of the box requiring least material for its construct. The focal length f of a lens is given by $\frac{1}{f} = \frac{1}{p} + \frac{1}{p}$ from the object and the image respectively. For possible maximum error of 0.5cm. Find the maximum error of 0.5cm. Find the maximum error of the following: i) If div $\vec{F} = 0$ then \vec{F} is called A) Solenoidal vector C) Rotational vector ii) The curl of gradient of \vec{F} is A) 1 B) $\nabla^2 \vec{F}$ iii) If $\vec{F} = 2x^2i - 3yzj + xz^2k$ then $\nabla \cdot \vec{F}$ is	ection. $\frac{1}{q}$, where p and q are q a certain lens, p and dimum error in f. B) Irrotational vector D) None of these. C) $\nabla \vec{F}$	the distances q are each 20 or D) 0	(06 Marks) s of the len coms with (06 Marks)
d.	of the box requiring least material for its construction. The focal length f of a lens is given by $\frac{1}{f} = \frac{1}{p} + \frac{1}{p}$ from the object and the image respectively. For possible maximum error of 0.5cm. Find the maximum err	ection. $\frac{1}{q}$, where p and q are a certain lens, p and dimum error in f. B) Irrotational vector D) None of these. C) $\nabla \vec{F}$ C) $x + y - z$ C) Collinear	the distances q are each 20 or D) 0 D) $x^2 - 3y$ D) Not	(06 Marks) s of the len coms with a (06 Marks) $+ z^{2}$ orthogona

3

		PART - B		
5	a.	Choose the correct answers for the following: $\pi/2$		
		i) The value of $\int_{0}^{4} \cos^{3}2x dx$ is	03	
		A) 1 B) 1/3	C) – 1	D) π/2
		i) The value of $\int_{0}^{\frac{\pi}{4}} \cos^{3}2x dx \text{ is}$ A) 1 B) 1/3 ii) The value of $\int_{0}^{1} x^{6} \sqrt{1-x^{2}} dx \text{ is}$	3	7
		A) $\frac{8\pi}{135}$ B) $\frac{\pi}{16}$	C) $\frac{5\pi}{256}$	D) $\frac{5\pi}{126}$
		iii) The asymptote to the curve $y^2(a - x) = x^3$ is A) $y = 0$ B) $x = 0$	C) $x = a$	D) $y = a$
		iv) The entire length of the cardioid $r = a (1 + co A) 7a$ B) 8a	sθ) is C) 10a	D) 9a (04 Marks)
	b.	Obtain the reduction formula for ∫Sin ^m xCos ⁿ xdx		(04 Marks)
	c.	Using differentiation under integral sign evaluate	$\int_{0}^{\infty} e^{-x} \frac{\sin \alpha x}{x} dx$	(06 Marks)
	d.	Find the volume of the solid obtained by revolvi	ing the astroid $x^{2/3} + y$	
		x - axis		(06 Marks)
6	a.	dy	C) secytanx = c	= 0 is D) secytany = c
		ii) The solution of the differential equation $\frac{1}{dx}$	$\frac{1}{X}$	D)
		A) $tancx = y$ B) $y = 2x tan^{-1}(cx)$		D) sincx = y
		iii) The integrating factor for the differential equ	/44	ž.
		A) tanx B) cotx	C) sinx	D) cosx
		iv) By replacing $\frac{dr}{d\theta}$ by $-r^2 \frac{d\theta}{dr}$ in the differential $\frac{d\theta}{dr}$ in $\frac{d\theta}{d$	ial equation $f\left(r,\theta,\frac{dr}{d\theta}\right)$	= 0 we get the
		differential equation of A) polar trajectory	B) parametric trajecto	ory
	C	C) orthogonal trajectory	D) parallel trajectory	(04 Marks)
	b.	Solve $(1 + e^{x/y})dx + e^{x/y}\left(1 - \frac{x}{y}\right)dy = 0$		(04 Marks)
	c. d.	Solve $(xy^3 + y)dx + 2(x^2y^2 + x + y^4) dy = 0$ Find the orthogonal trajectories of the family	of curves $y = x + C$	(06 Marks) Ce ^{-x} , where C is the
7	a.	parameter. Choose the correct answers for the following:	CMRIT LIBI BANGALORE -	(06 Marks) 560 037
		i) The rank of a unit matrix of order 4 is A) 4 B) 3 ii) The equation $y + 2y = 1 \cdot 7y + 14y = 12$ are	C) 1	D) 0
		ii) The equation $x + 2y = 1$; $7x + 14y = 12$ are A) Consistent	B) Inconsistent	
		C) Consistent having unique solution	D) Consistent having	infinite solution.

iii) The homogeneous system of equations has
A) Trivial solution
C) No solution
iv) Matrix has a value this statement

A) is always true

C) is false

B) Non trivial solution

D) None of these.

B) Depends upon the matrix

D) None of these.

(04 Marks)

b. Reduce the matrix
$$A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$
 in to normal form and hence find its rank.

(04 Marks)

Test for consistency and solve c. 5x + 3y + 7z = 4; 3x + 26y + 2z = 9; 7x + 2y + 10z = 5(06 Marks)

Solve the system of equations, 2x + y + z = 10; 3x + 2y + 3z = 18; x + 4y + 9z = 16 by Gauss – Jordan method. (06 Marks)

Choose the correct answers for the following: 8 a.

The matrix of the linear transformation that transforms the pair (x₁, x₂) to the pair $(2x_1 - 5x_2, 5x_1 + 4x_2)$ is

B) $\begin{bmatrix} 2 & 5 \\ 1 & 4 \end{bmatrix}$ C) $\begin{bmatrix} 2 & -5 \\ 5 & 4 \end{bmatrix}$ D) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

ii) The eigen values of the matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ are

A) 0, 2, 15 B) 0, 3, 15 C) 0, 1, 2 D) 1, 3, 15 iii) The matrix of the quadratic form $8x^2 + 7y^2 + 3z^2 - 12xy - 8yz + 4zx$ is

A) $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ B) $\begin{bmatrix} 8 & 0 & 3 \\ 6 & -7 & 4 \\ 2 & 3 & 5 \end{bmatrix}$ C) $\begin{bmatrix} -8 & 2 & 6 \\ 6 & 7 & -4 \\ 2 & -3 & 4 \end{bmatrix}$ D) $\begin{bmatrix} 1 & 3 & 5 \\ -2 & 6 & 7 \\ 2 & 3 & 8 \end{bmatrix}$

iv) A real quadratic form X'AX in n variates is said to be indefinite if

A) All the eigen values of A are positive

B) All the eigen values of A are negative

C) All the eigen values of A are zero

D) Some of the eigen values are positive and other negative.

(04 Marks)

Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 4 & 3 \\ 2 & 9 \end{bmatrix}$ (04 Marks)

Reduce the matrix $A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ to the diagonal form. (06 Marks)

Show that the transformation $y_1 = 2x_1 + x_2 + x_3$, $y_2 = x_1 + x_2 + 2x_3$, $y_3 = x_1 - 2x_3$ is regular. (06 Marks) Write down the inverse transformation.

BANGALORE - 560 037