2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

USN

Second Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Engineering Mathematics – II**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question from each module.

a. Solve $y''' - y'' + 4y' - 4y = \sin h(2x+3)$.

(06 Marks)

Solve $y'' + 2y' + y = 2x + x^2$.

(07 Marks)

c. Solve $(D^2 + 1)y = \tan x$ by method of variation of parameter.

(07 Marks)

a. Solve $(D^3 - 1)y = 3\cos 2x$, where $D = \frac{d}{dx}$.

(06 Marks)

b. Solve $y'' - 6y' + 9y = 7e^{-2x} - \log 2$.

(07 Marks)

c. Solve $y'' - 3y' + 2y = x^2 + e^x$ by the method of un-determined coefficients.

(07 Marks)

Solve $x^2y'' + xy' + 9y = 3x^2 + \sin(3\log x)$.

(06 Marks)

b. Solve $y\left(\frac{dy}{dx}\right)^2 + (x-y)\frac{dy}{dx} - x = 0$.

(07 Marks)

Solve (px - y)(py + x) = 2p by reducing it into Cluiraut's form by taking $X = x^2$ and $Y = y^2$. (07 Marks)

Solve $(3x+2)^2y'' + 3(3x+2)y' - 36y = 8x^2 + 4x + 1$.

(06 Marks)

Solve $p^2 + 2py \cot x - y^2 = 0$.

(07 Marks)

Show that the equation $xp^2 + px - py + 1 - y = 0$ is Clairaut's equation and find its general (07 Marks) and singular solution.

Form the partial differential equation of the equation $x + my + nz = \phi(x^2 + y^2 + z^2)$ by (06 Marks) eliminating the arbitrary function.

Solve $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \mathbf{x} + \mathbf{y}$.

(07 Marks)

Derive the one dimensional heat equation $u_t = c^2 \cdot u_{xx}$

(07 Marks)

OR

Form the partial differential equation of the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ by eliminating (06 Marks) arbitrary constants.

b. Solve
$$\frac{\partial^2 z}{\partial y^2} = z$$
, given that $z = 0$ and $\frac{\partial z}{\partial y} = \sin x$ when $y = 0$. (07 Marks)

c. Obtain the solution of one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ by the method of separation of variables for the positive constant. (07 Marks)

Module-4

7 a. Evaluate
$$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$$
. (06 Marks)

b. Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 dy dx$$
 by changing the order of integration. (07 Marks)

c. Derive the relation between Beta and Gamma function as
$$\beta(m,n) = \frac{\lceil m \cdot \rceil n}{\lceil m+n \rceil}$$
 (07 Marks)

OR

8 a. Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} x^3 \cdot y \, dx \, dy$$
 (06 Marks)

b. Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^2 - x^2}} \sqrt{x^2 + y^2} \, dy \, dx$$
 by changing into polar coordinates. (07 Marks)

c. Evaluate
$$\int_{0}^{\infty} \frac{dx}{1+x^4}$$
 by expressing in terms of beta function. (07 Marks)

9 a. Find (i) L[t cos at] (ii) L
$$\left[\frac{\sin at}{t}\right]$$
. (06 Marks)

b. Find the Laplace transform of the full wave rectifier
$$f(t) = E \sin wt$$
, $0 < t < \frac{\pi}{w}$ with period $\frac{\pi}{w}$.

c. Solve
$$y'' + k^2y = 0$$
 given that $y(0) = 2$, $y'(0) = 0$ using Laplace transform. (07 Marks)

OR

10 a. Find Inverse Laplace transform of
$$\frac{s+2}{s^2(s+3)}$$
. (06 Marks)

b. Express the function
$$f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \sin t, & t > \pi \end{cases}$$
 CMRIT LIBRARY BANGALORE - 569 037

in terms of unit step function and hence find its Laplace transform. (07 Marks)

c. Find Inverse Laplace transform of
$$\frac{1}{s(s^2 + a^2)}$$
 using convolution theorem. (07 Marks)

* * * * * 2 of 2