Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

15PHY12/22

First/Second Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Engineering Physics**

Time: 3 hrs

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing one full question from each module. 2. Physical constants: Plank's constant, $h = 6.63 \times 10^{-34} JS$; Mass of electron, $m = 9.11 \times 10^{-31} kg$; Boltzmann constant, $k = 1.38 \times 10^{-23} J/k$; Avogadro number, $N_A = 6.02 \times 10^{26} / \text{Kmole}$; Velocity of light, $c = 3 \times 10^8$ m/s; Charge of electron, $e = 1.602 \times 10^{-19}$ C.

Module-1

- What are postulates of Plank's quantum theory of black body radiations? Deduce Rayleigh 1 (06 Marks) and Jean's law from Planks's law.
 - Define phase velocity and group velocity. Obtain the relation between group velocity and phase velocity.
 - c. An electron has a speed of 800 m/s with an accuracy of 0.004%. Calculate the certainty with (04 Marks) which one can locate the position of the electron.

OR

- State Heisenberg's uncertainty principle and express three forms of uncertainty relations. 2 (04 Marks)
 - Explain probability density. Set up one dimensional time independent Schrodinger wave (08 Marks) equation.
 - An electron is confined to move between two rigid walls separated by 1 nm. Find the de-Broglie wavelength of the electron corresponding to first excited energy state. (04 Marks)

Module-2

- Define Fermi-Dirac distribution function and explain the effect of temperature and energy 3 (06 Marks) on Fermi factor.
 - b. Discuss the merits of quantum free electron theory. (06 Marks)
 - A metallic wire has a resistivity of $1.42 \times 10^{-8} \ \Omega m$ for an electric field of $0.14 \ Vm^{-1}$. Find: ii) Average draft velocity, assuming that there are i) Mean collision time
 - 6×10^{28} electrons/m³
- (04 Marks)

- a. Explain in brief expressions for electron and hole concentrations in conduction band and (06 Marks) valence band of intrinsic semi conductor.
 - What is Meissner effect? Explain two types of super conductors. (06 Marks)
 - Calculate the Fermi energy of sodium at 0 K assuming that it has one free electron per atom and a density of sodium is 970 kg/m³ and atomic weight 23. (04 Marks)

Module-3

- Explain the welding mechanism and measurements of atmospheric pollutants using laser. 5
 - Describe the construction and working of carbon dioxide laser with energy level diagram. (08 Marks)
 - Optical power of 1 mw is launched into an optical fibre of length 100 m. If the power emerging from the other end is 0.3 mw. Calculate the fibre attenuation. (03 Marks)

OR

- 6 a. Discuss the different types of optical fibres with sketches. (06 Marks)
 - b. What is holography? Explain the recording and reconstruction processes in holography with neat diagram. (06 Marks)
 - c. The output wavelength of CO₂ laser is 10.6 μm. If it produces an output of 1 kw, how many photons are emitted in one minute? (04 Marks)

Module-4

- 7 a. Define atomic packing factor. Explain seven crystal systems. (08 Marks)
 - b. What are Miller Indices? Explain the procedure to find Miller Indices with example.

(04 Marks)

c. Calculate the wavelength of monochromatic beam of x-ray is incident on the plane (121) of NaCl, with a glancing angle 23.8°, results in second order diffraction maxima with a lattice

constant 3.21 Å.

(04 Marks)

OR

- 8 a. Define the terms:
 - i) Unit cell
 - ii) Space lattice
 - iii) Co-ordination number
 - iv) Basis
 - v) Crystal structure (05 Marks)
 - b. Define polymorphism and allotropy. Describe Bragg's spectrometer. Explain the determination of crystal structure. (08 Marks)
 - c. Molybdenum has a BCC structure. Its Lattice parameter is 3.15 Å. Determine the radius of molybdenum atom. (03 Marks)

Module-5

9 a. Explain the construction and working of scanning electron microscope with neat diagram.

(06 Marks)

- b. Define Mach number. Explain the distinction between subsonic and supersonic waves with suitable example. (05 Marks)
- c. Describe construction and working of Reddy's shock tube.

CMRIT LIBRARY (05 Marks) BANGALORE - 560 037

OR

10 a. Explain density of states for any three quantum structures with graphical representation.

(06 Marks)

b. Describe sol-gel method for producing nano materials.

(05 Marks)

c. Explain the synthesis of carbon nanotubes using arc-discharge method.

(05 Marks)

* * * *