

USN

18MAT11

First Semester B.E. Degree Examination, June/July 2019 Calculus and Linear Algebra

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. With usual notation, prove that $\tan \phi = r \left(\frac{d\theta}{dr} \right)$. (06 Marks)

b. Find the radius of curvature of $a^2y = x^3 - a^3$ at the point where the curve cuts the x-axis.

c. Show that the evolute of the parabola $y^2 = 4ax$ is $27ay^2 = 4(x - 2a)^3$. (08 Marks)

OF

2 a. Prove that the pedal equation of the curve $r^n = a^n cosn\theta$ is $a^n p = r^{n+1}$. (06 Marks)

b. Show that for the curve $r(1 - \cos\theta) = 2a$, ρ^2 varies as r^3 . (06 Marks)

c. Find the angle between the polar curves $r = a(1 - \cos\theta)$ and $r = b(1 + \cos\theta)$. (08 Marks)

Module-2

3 a. Expand log(1 + cosx) by Maclaurin's series up to the term containing x^4 . (06 Marks)

b. Evaluate $\lim_{x \to 0} \left\{ \frac{a^x + b^x + c^x}{3} \right\}^{1/x}$ (07 Marks)

c. Find the extreme values of the function $f(x, y) = x^3 + y^3 - 3x - 12y + 20$. (07 Marks)

OR

4 a. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ then prove that $x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y} + z \cdot \frac{\partial u}{\partial z} = 0$ (06 Marks)

b. If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$. Evaluate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at the point (1, -1, 0).

c. A rectangular box, open at the top, is to have a volume of 32 cubic feet. Find the dimensions of the box, if the total surface area is minimum. (07 Marks)

Module-3

5 a. Evaluate by changing the order of integration

 $\int_{0}^{a} \int_{0}^{2\sqrt{ax}} x^{2} \cdot dy \cdot dx , \quad a > 0$ (06 Marks)

b. Find the area bounded between the circle $x^2 + y^2 = a^2$ and the line x + y = a. (07 Marks)

c. Prove that $\beta(m, n) = \frac{\boxed{m \cdot \boxed{n}}}{\boxed{m+n}}$ (07 Marks)

OR

6 a. Evaluate
$$\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz.dy.dx$$
 (06 Marks)

Find the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double integration. (07 Marks)

c. Show that
$$\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi/2} \sqrt{\sin \theta} . d\theta = \pi$$
 (07 Marks)

Module-4

7 a. Solve
$$(1 + e^{x/y}) dx + e^{x/y} \left(1 - \frac{x}{y}\right) dy = 0$$
 (06 Marks)

If the air is maintained at 30°C and the temperature of the body cools from 80°C to 60°C in 12 minutes. Find the temperature of the body after 24 minutes. (07 Marks)

c. Solve
$$yp^2 + (x - y) p - x = 0$$
. (07 Marks)

8 a. Solve
$$\frac{dy}{dx} + y \cdot \tan x = y^3 \cdot \sec x$$
 (06 Marks)

b. Find the orthogonal trajectory of the family of the curves $r^n \cdot cosn\theta = a^n$, where a is a parameter.

Solve the equation $(px - y) \cdot (py + x) = 2p$ by reducing into Clairaut's form taking the substitution $X = x^2$, $Y = y^2$. (07 Marks)

Find the rank of the matrix

$$A = \begin{pmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6 \end{pmatrix}$$
 by applying elementary Row transformations. (06 Marks)

b. Solve the following system of equations by Gauss-Jordan method:

$$x + y + z = 9$$
, $2x + y - z = 0$, $2x + 5y + 7z = 52$ (07 Marks)

c. Using Rayleigh's power method find the largest eigen value and corresponding eigen vector

of the matrix $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$ with $X^{(0)} = (1, 0, 0)^T$ as the initial eigen vector carry out

5 iterations.

(07 Marks)

For what values of λ and μ the system of equations.

$$x + y + z = 6$$
, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$ may have

i) Unique solution ii) Infinite number of solutions

iii) No solution. (06 Marks)

b. Reduce the matrix
$$A = \begin{pmatrix} -1 & 3 \\ -2 & 4 \end{pmatrix}$$
 into diagonal form. (07 Marks)

c. Solve the following system of equations by Gauss-Seidel method 20x + y - 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25. Carry out 3 iterations. (07 Marks)