Third Semester B.E. Degree Examination, June/July 2019 Advanced Mathematics – I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Express square root of
$$1-i$$
 in the form of $x+iy$. (07 Marks)

b. Find the modulus and amplitude of the following and express each in polar form.

(i)
$$1 - i\sqrt{3}$$
 (ii) $\frac{1 - i}{1 + i}$ (07 Marks)

c. Expand $\cos^6\theta$ in series of multiples of θ . (06 Marks)

2 a. Find the nth derivative of
$$e^{ax} \cos(bx + c)$$
. (06 Marks)

b. Find the nth derivative of
$$\frac{x}{(x+1)(x-2)}$$
. (07 Marks)

c. If
$$y = \log(x + \sqrt{1 + x^2})$$
, prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y = 0$. (07 Marks)

3 a. Find the angle between radius vector and the tangent of the curve $r = a(1 + \cos \theta)$. (06 Marks)

b. Find the Taylor's series expansion of the function e^x about x = 1.

(07 Marks)

c. Obtain the Maclaurin's series expansion of the function $\log_e(1 + x)$ up to third degree terms. (07 Marks)

4 a. If
$$\cos u = \frac{x+y}{\sqrt{x}+\sqrt{y}}$$
 prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = -\frac{1}{2}\cot u$. (06 Marks)

b. If
$$x = r \cos \theta$$
 and $y = r \sin \theta$, prove that $JJ' = 1$. (07 Marks)

c. If
$$x^y + y^x = c$$
, where c is a constant, find $\frac{dy}{dx}$. (07 Marks)

5 a. Obtain the reduction formula
$$I_n = \int \sin^n x \, dx$$
, where n is a positive integer. (06 Marks)

b. Evaluate:
$$\int_{0}^{1} \int_{0}^{\sqrt{x}} xy(x+y) dx dy$$
 (07 Marks)

c. Evaluate:
$$\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-z-y} (x+y+z) \, dx \, dy \, dz$$
 (07 Marks)

6 a. Prove the following:

$$\beta(m, n) = \beta(n, m) \tag{06 Marks}$$

b. Prove that
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
 (07 Marks)

c. Using Gamma function, evaluate the integral
$$\int_0^1 \frac{1}{\sqrt{1-x^4}} dx$$
 (07 Marks)

MATDIP301

7 a. Solve:
$$(x + y + 1)^2 \frac{dy}{dx} = 1$$
 (06 Marks)

b. Solve:
$$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$$
.
c. Solve: $(x^2 - xy + y^2)dx - xy dy = 0$ (07 Marks)

c. Solve:
$$(x^2 - xy + y^2)dx - xy dy = 0$$
 (07 Marks)

Solve the following second order O.D.Es. 8

a.
$$\frac{d^2y}{dx^2} + y = e^x$$
 (06 Marks)

b.
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \cos^2 x$$
 (07 Marks)

c.
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 2(1+x).$$
 (07 Marks)