First Semester B.E. Degree Examination, June/July 2019 **Engineering Mathematics - I**

RANGALOR! Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, choosing at least two from each part.

PART - A

Choose the correct answers for the following:

(04 Marks)

Sixth derivative of
$$(3x + 2)^{-5}$$
 is

A) 0

B) $\frac{-(10!)}{4!} \cdot \frac{3^6}{(3x + 2)^{11}}$

C) $\frac{10!}{4!} \cdot \frac{3^5}{(3x + 2)^{11}}$

D) $\frac{10!}{4!} \cdot \frac{3^6}{(3x + 2)^{11}}$

C)
$$\frac{10!}{4!} \cdot \frac{3^5}{(3x+2)^{11}}$$

D)
$$\frac{10!}{4!} \frac{3^6}{(3x+2)^{11}}$$

ii) If $y = ax^{n+1} + \frac{b}{x^n}$ then y_2 is

A)
$$\frac{n(n-1)y}{x^2}$$

B)
$$\frac{n(n+1)y}{x^2}$$

A)
$$\frac{n(n-1)y}{x^2}$$
 B) $\frac{n(n+1)y}{x^2}$ C) $\frac{-n(n+1)y}{x^2}$ D) None of these.

iii) By Rolle's theorem for f(x) = |x| in [-1, 1], the value of c is

B) Does not exist

D) None of these.

iv) Expansion of e^x about x = 1 is

A)
$$1 + (x-1) + \frac{(x-1)^2}{2!} + \dots$$

A)
$$1+(x-1)+\frac{(x-1)^2}{2!}+\dots$$
 B) $e^x\left\{1+(x-1)+\frac{(x-1)^2}{2!}+\dots\right\}$

C)
$$e^{\left\{1+(x-1)+\frac{(x-1)^2}{2!}+\dots\right\}}$$

C)
$$e\left\{1+(x-1)+\frac{(x-1)^2}{2!}+\dots\right\}$$
 D) $e\left\{1+e^{x-1}+\frac{e^{2(x-1)}}{2!}+\dots\right\}$

If $x = \sin t$, $y = \cos pt$ then prove that $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} + (p^2 - n^2)y_n = 0$ b.

(06 Marks)

State and prove Lagrange's Mean Value theorem. c.

(04 Marks)

Expand tan⁻¹x by Maclaurin's series upto first four non-zero terms. d.

(06 Marks)

Choose the correct answers for the following: 2 a.

(04 Marks)

The value of $\lim_{y \to \infty} \left(y + \frac{1}{y} \right)^{1/y}$ is i)

D) None of these

The angle between the curves $r^n = a^n \cos n\theta$ and $r^n = b^n \tan n\theta$ is

B) $\pi/2$

C) Does not exist

D) None of these

The radius of curvature of log(cos x) is

A) sec x

C) sec^2x

D) sec^3x

The pedal equation of $m\theta = \log\left(\frac{r}{a}\right)$ is

A) $r^2 = p(1 + m^2)$ B) $r = ae^{m\theta}$

C) $r = p^2(1 + m^2)$ D) $r^2 = p^2(1 + m^2)$

Find the angle between the radius vector and the tangent to the curve $2a = r(1 - \cos \theta)$ b.

(04 Marks)

Find the points on $y^2 = 8x$ at which the radius of curvature is 125/16.

(06 Marks)

Evaluate $\lim_{x \to 0} \left(\frac{1}{x^2} - \cot^2 x \right)$ d.

(06 Marks)

Choose the correct answers for the following: 3

(04 Marks)

- If f = f(x, y), x = x(t), y = y(t) then $\frac{df}{dt} =$
 - A) $\frac{\partial x}{\partial x} \cdot \frac{\partial f}{\partial t} + \frac{\partial y}{\partial t} \cdot \frac{\partial f}{\partial x}$

B) $\frac{\partial f}{\partial x} \cdot \frac{dt}{dx} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$ D) $\frac{\partial f}{\partial y} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$

C) $\frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$

- In $N=10~\pi~L~/R^4$, if L is decreased by 2% and R is increased by 2% then the value ii) of N is
 - A) increased by 10%

B) decreased by 10%

C) increased by 6%

- D) decreased by 6%
- If u = x + y, $v = \frac{1}{x + y}$, $J = \frac{\partial(u, v)}{\partial(x, y)}$, $J^* = \frac{\partial(x, y)}{\partial(u, v)}$ then
- C) J does not exist D)J* does not exist
- If (a, b) is a critical point of f(x, y) and at (a, b), $f_{xx} = A$, $f_{xy} = B$, $f_{yy} = C$ then f(x, y)has a minimum at (a, b) if

B) $AC - B^2 > 0$, A = 0

A) $AC - B^2 > 0$, A < 0C) $B^2 - AC > 0$, A > 0

- D) None of these
- If $u = x^2 \tan^{-1} \left(\frac{y}{x} \right) y^2 \tan^{-1} \left(\frac{x}{y} \right)$, then find $\frac{\partial^2 u}{\partial x \partial y}$ (04 Marks)
- If u = x + y + z, uv = y + z, uvw = z then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. (06 Marks)
- Find the extreme values of $x^3 + 3xy^2 15x^2 15y^2 + 72x$.

(06 Marks)

Choose the correct answers for the following:

(04 Marks)

- The operator $\nabla = i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z}$ has the magnitude

B) |i+j+k| = 3

C) Not defined

- D) $\left[\left(\frac{\partial}{\partial x} \right)^2 + \left(\frac{\partial}{\partial y} \right)^2 + \left(\frac{\partial}{\partial z} \right)^2 \right]^{1/2}$
- Div $(2x^2z i xy^2z j + 3yz^2k)$ at (1, 1, 1) is A) 12

- C) 10
- D) -8
- The velocity field is obtained by "Stirring coffee in a cup" is related to
 - A) Divergence
- B) curl
- C) Mixing sugar in it D) Cold coffee.
- The unit vectors e₁, e₂, e₃ are called iv)
 - A) fundamental vectors

B) base vectors

C) dependent vectors

- D) both (A) and (B)
- Find the directional derivative of $\phi = x^2 y^2 + 2z^2 = 0$ at P(1, 2, 3) in the direction of the line PQ were Q(5, 0, 4). In what direction it will be maximum and what is its value?
 - (04 Marks)

Prove that $\nabla \times (\overline{A} \times \overline{B}) = (\overline{B} \cdot \nabla) \overline{A} - (\nabla \cdot \overline{A}) \overline{B} + (\nabla \cdot \overline{B}) \overline{A} - (\overline{A} \cdot \nabla) \overline{B}$ c.

(06 Marks)

Prove that a spherical coordinate system is orthogonal.

(06 Marks)

PART - B

5	a.	Choose the correct ansv		- 27	(04 Marks)
		i) $\int_{0}^{\pi} \sin^{n} x dx = 2 \int_{0}^{\pi/2} \sin^{n} x dx$	in ⁿ x dx is	200	
		A) True only who	en n is even	B) true only when n	is odd
		C) True always		D) False always	
			by the curve $x = a(t - a)$	$\sin t), y = a(1 - \cos t)$	$0 \le t \le 2\pi$ and its
		base x-axis is	D) 2 2	0.2.2	D) 4 2
		A) πa^2	B) $2\pi a^2$	C) $3\pi a^2$	D) $4\pi a^2$
		iii) In a curve $f(x, y) = 0$, if only even powers of x and y appears in the equation then it is symmetric about the line			
		A) $x - axis$	B) y – axis	C) origin	D) All of these.
			700		
		iv) The value of $\int_{0}^{\pi/2} s$ A) 2/35	$\sin^3 x \cos^4 x dx$ is	4	
		0	D) /25	(1)	D) =
		A) 2/35	Β) π/35	C) $6\pi/105$	D) π
	b.	Evaluate $\int_{0}^{a} x^{2} (a^{2} - x^{2})^{2}$	dx		(04 Marks)
	c.	Find the entire length of	$f x^{2/3} + y^{2/3} = a^{2/3}$		(06 Marks)
		Evaluate $\int_{0}^{\pi/2} \frac{\log(1 + a\sin^2 x)}{\sin^2 x} dx$, a is a parameter, by using the method of differential			
	d.	Evaluate $\int \frac{\log(1+as)}{\sin^2 x}$	$\frac{dx}{dx}$ dx, a is a param	eter, by using the meth	nod of differentiation
		under integral sign. (06 Marks)			
6	a.	Choose the correct answers for the following: (0			
		i) If $y' = \frac{1}{x} \left(y + x \tan \left(\frac{y}{x} \right) \right)$ then $\sin \left(\frac{y}{x} \right) = 0$			
		1) If $y' = - \left(y + x \operatorname{ta} \right)$	$\lim_{x \to \infty} \frac{1}{x}$ then $\lim_{x \to \infty} \frac{1}{x} = 1$		
		A) cx^2	B) cx	C) cx^3	D) cx^4
			= 0, the integrating fact	or is of the form	,
				A/	~(**)
		A) $\frac{1}{N} \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial y} \right)$	=I(X)	B) $\frac{1}{N} \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial y} \right) =$: g(y)
		1 (am an) A. ?	$1(\partial M \partial N)$	
		C) $\frac{1}{N} \left(\frac{\partial M}{\partial v} - \frac{\partial N}{\partial x} \right)$	= g(y)	D) $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) =$	f(x)
		10(2 1 2) 1	2 , 3,1 0:		
	1	A) $a = p$, $b = q$	B) $a = a$, $b = p$	C) $a = 2b = p = q$	D) $b = p$
		iv) The orthogonal tra	ajectories of $x^2 + y^2 = a^2$	are	, 1
		A) $y = x$	B) $a = q$, $b = p$ ajectories of $x^2 + y^2 = a^2$ B) $y = kx$	C) $x^2 + y^2 = k^2$	D) None of these
	b.	Find the orthogonal trajectories of $x^2 + y^2 = 2cx$			(04 Marks)
	c.	Solve $(1+x^2)\frac{dy}{dx} + xy =$			(06 Marks)
	Ċ.	uA			(00 Marks)
	d.	Solve $(x^2 + y^3 + 6x)dx$	$+xy^2dy=0$	- V VDIZARV	(06 Marks)
				CALORE - 560 037	
7	a.	Choose the correct answers for the following: (04 Marks) The statement "A matrix has a value" is			
		i) The statement 11	matrix has a value" is		
		A) always false		B) always true	atuir ia autha aanal
		C) true only if the	matrix is square	D) true only if the m	atrix is orthogonal.

3 of 4

(06 Marks)

Rank of $\begin{pmatrix} 1 & 2 & -3 & 2 & 4 \\ 4 & 8 & -12 & 8 & 16 \\ 3 & 6 & -9 & 6 & 12 \end{pmatrix}$ is A) 0 C) 2 D) 3 In a system of n linear equations, r and r_1 are the ranks of the coefficient matrix and the augmented matrix respectively and $r = r_1$ then there A) is a unique solution if r < nB) is a unique solution if r > nC) are infinitely many solutions if r > nD) are infinitely many solutions if r < nFind the non-trivial solution of the equations x + 2y + 3z = 0, 3x + 4y + 4z = 0, 7x + 10y + 11z = 0 if it exists. (04 Marks) Find the condition satisfied by a, b, c so that the following system of equations may have a solution: x + 2y - 3z = a, 3x - y + 2z = b, x - 5y + 8z = c(06 Marks) Solve the system by Gauss Jordan method: x + 2y + z = 3, 2x + 3y + 2z = 5, 3x - 5y + 5z = 2, 3x + 9y - z = 4. (06 Marks) Choose the correct answers for the following: (04 Marks) The roots of $|A - \lambda I| = 0$ are called A) Latent roots B) Characteristic roots C) Both (A) and (B) D) None of these A matrix A is orthogonal if ii) B) $A = A^T$ C) $A = A^{-1}$ D) $A^{-1} = A^{T}$ A) | A | = 0iii) If |A| = 0 then there at least one eigenvalue of A is A) 0 B) 1 If r is the rank of A and p is the index of X^TAX in n variables then the Quadratic form X¹AX is called negative definite if B) r = n, p = 0C) r < n, p = 0 D) r < n, p = rA) r = n, p = nDetermine the nature of the Quadratic form without reducing to the canonical form: $2x_1^2 + x_2^2 - 3x_3^2 + 12x_1x_2 - 8x_2x_3 - 4x_3x_1$ (04 Marks) c. Find the eigenvalues and eigenvector corresponding to the numerically largest eigenvalue of (06 Marks) Reduce the quadratic form $2x_1^2 + 6x_2^2 + 2x_3^2 + 8x_1x_3$ to canonical form by orthogonal reduction. CMRIT LIBRARY

2x - 3y = 5 and ax + by = -10 can have many solutions if (a, b) =

C) (4, -6)

ii)

b.

8

a.

A) (2, 3)

GALORE - 560 037