USN

First/Second Semester B.E. Degree Examination, Dec.2016/Jan.2017 Engineering Physics

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing one full question from each module.

2. Physical constants: Velocity of light $C = 3 \times 10^8$ m/s; Plank's consant $h = 6.625 \times 10^{-34}$ JS; Mass of electron $e = 9.11 \times 10^{-31}$ kg; Boltzman constant $K = 1.38 \times 10^{-23}$ JK; Avagadro number $N_A = 6.02 \times 10^{26}$ /k mole.

Module-1

- a. Show that how Plank's law can be reduced to Wein's law and Rayleigh Jeans law.
 - (06 Marks)
 What is a Wave function? List the properties of wave function. (06 Marks)
 - c. Show that group velocity is equal to particle velocity. (04 Marks)
 - d. A Quantum particle is confined to one dimensional box of width 'a' is its first excited state. What is the probability of finding the particle over an interval of a/2 marked symmetrically at the centre of the box. (04 Marks)
- 2 a. Explain Black body radiation spectrum. (04 Marks)
 - b. Obtain the energy eigen value expression and energy eigen functions for an electron in one dimensional potential well of infinite height. (08 Marks)
 - c. What are the characteristics of matter waves? (04 Marks)
 - d. The velocity of an electron of a hydrogen atom in the ground state is 2.19×10^6 m/s. Calculate the wavelength of the de Broglie waves associated with its motion. (04 Marks)

Module-2

- 3 a. Define the terms drift velocity, thermal velocity, mean collision time and mean free path.

 (04 Marks)
 - b. What is Hall effect? Obtain an expression for Hall coefficient. (06 Marks)
 - c. Explain the temperature dependence of electrical resistivity in metals and super conductors.
 - d. The Hall coefficient of a specimen of doped silicon found to be $3.66 \times 10^{-4} \text{m}^3/\text{Coulomb}$. The resistivity of a specimen is 9.33×10^{-3} ohm m. Find the mobility and density of the charge carrier, assuming single carrier concentration. (04 Marks)
- 4 a. Explain the success of Quantum free electron theory. (06 Marks)
 - b. What are intrinsic and extrinsic semiconductors? Obtain an expression for fermi level in intrinsic semiconductors. (06 Marks)
 - c. Explain in brief construction and working of maglev vehicles. (04 Marks)
 - d. An intrinsic semiconductors has an energy gap of 0.4ev. Calculate the probability of occupation of the lowest energy level in conduction band at 100°C. (04 Marks)

Module-3

- 5 a. Obtain an expression for energy density of emitted radiation under equilibrium condition.
 (06 Marks)
 - b. Obtain an expression for numerical aperture in an optical fiber. (05 Marks)
 - c. Explain the construction and working of semiconductor laser. (05 Marks)
 - d. The angle of acceptance of an optical fiber is 30, when kept in air. Find the angle of acceptance when it is in a medium of refractive index 1.33. (04 Marks)

14PHY12/22

6	a.	What is Holography? Explain the recording and reconstruction processes in holog with the help of suitable diagrams.	(06 Marks)
	b.		
		block diagram.	(05 Marks)
	c.	Explain different types of optical fibers.	(05 Marks)
	d.	The average output power of Laser Source emitting a laser beam of wavelength 6328 Å is	
	u,	5mw. Find the number of Photons emitted per second by the laser source.	(04 Marks)
Module-4			
7	a.	Explain in brief Seven Crystal Systems, with neat diagram.	(07 Marks)
	b.	Define Lattice, basis, crystal structure and unit cell.	(04 Marks)
	c.	Explain the procedure to find Miller indices of crystal plane.	(04 Marks)
	d.	The first order Bragg's reflection occurs at angle 20° in the plane (111). Find the	wavelength
		of X – rays if lattice constant is 3.615 $\overset{\circ}{A}$.	(05 Marks)
8	a.	Derive Bragg's law for crystal structure.	(05 Marks)
U	b.	Explain the structure of Perovskite crystal structure, with neat diagram.	(07 Marks)
	c.	List the differences between LED and LCD devices.	(04 Marks)
	d.	Draw the following planes in a cubic unit cell (100), (110), (111) and (112).	(04 Marks)
Module-5			
9	a.	Explain the description and working of Reddy's shock tube.	(08 Marks)
	b.	Describe the various Quantum structures.	(04 Marks)
	c.	List the characteristics of Reddy's Shock tube.	(04 Marks)
	d.	Describe the preparation of nanoparticles by ball milling method.	(04 Marks)
10	a.	Describe Acoustic, Ultrasonic, Subsonic and Supersonic waves.	(04 Marks)
	b.	Explain the structure of different Carbon nanotubes, with neat diagram.	(08 Marks)
	c.	Describe the principle and working of SEM, with neat diagram.	(08 Marks)

* * * * *