

Eighth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Pavement Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Draw a neat sketch of flexible pavement section and show the component parts. Briefly explain components. (06 Marks)
 - b. Bring out the points of difference between highway and airport pavement. (06 Marks)
 - c. In a dual wheel load assembly, the load on each wheel is 32kN, tyre pressure is 0.60 N/mm² and c/c wheel spacing is 410mm. The load is placed on a pavement 500mm thick. The sub grade is characterized by $E = 20 \text{N/mm}^2$ and $\mu = 0.5$. Calculate the deflections on the top of subgrade, at the radial distances of 0, 150mm and 250mm from centre of left wheel measured towards other wheel using deflection chart (chart-1).
- 2 a. Explain frost action. What are the measures adopted to reduce its effects? (06 Marks)
 b. State the assumptions and limitations of Boussinesq's theory. (06 Marks)
 - c. A plate bearing test conducted with 30cm diameter plate on subgrade yielded a pressure of 2.26 kg/cm² at 0.25cm deflection. Design the pavement section by Burmister's approach for a contact pressure of 8.85 kg/cm² having radius of contact area of 15cm (chart 2). (08 Marks)
- a. Discuss briefly with the aid of sketches, the importance of wheel load and contact pressure in the design of flexible pavements. (08 Marks)
 - b. There are 2800 commercial vehicles per day on a road in both directions. The wheel load survey indicated that the wheel loads are distributed as 35kN = 25%, 45kN = 30%, 55kN = 20%, 65kN = 10%, 75kN = 10% and 85kN = 5%. Calculate the design repetitions for ten year period equivalent to 50kN wheel load using fourth power rule.

$$[EWL factor = \left(\frac{\text{Wheel load}}{\text{equivalent wheel load}}\right)^{4}].$$
 (12 Marks)

4 a. Explain Mcleod method of highway pavement design.

(06 Marks)

b. Design the flexible pavement by triaxial method using the following data:

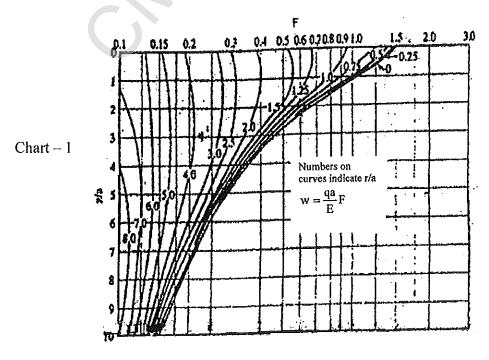
 $= 100 \text{ kg/cm}^2$ E-value of subgrade soil $= 400 \text{ kg/cm}^2$ E-value of base course $= 1000 \text{ kg/cm}^2$ E-value of 8cm thick bituminous surface = 6000 kgDesign wheel load = 15cmRadius of contact area Traffic coefficient = 1.5= 0.6Rainfall coefficient = 0.25cmDesign deflection

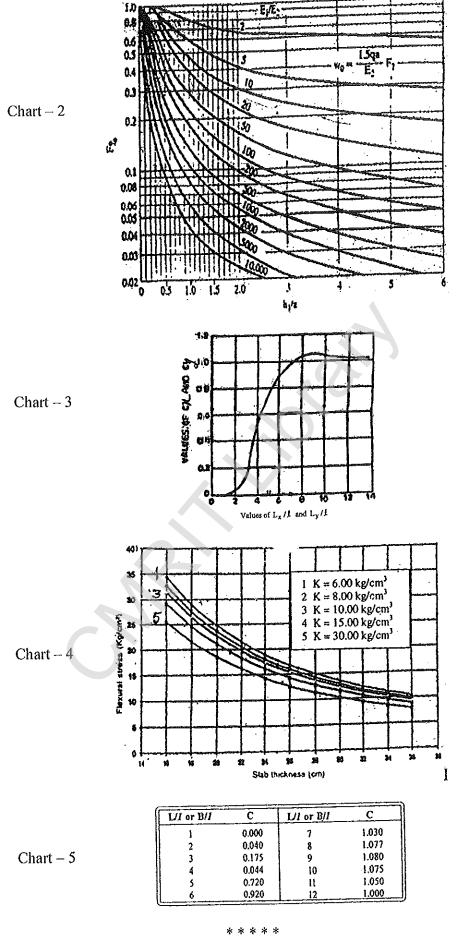
(06 Marks)

c. Write the equation recommended IRC:37-2001 for the computation of design traffic. Explain each term. How are the values obtained? (08 Marks)

PART – B

- 5 a. Discuss the effect of temperature on cement concrete pavement slab. Explain how warping stress occur at the critical regions of cement concrete pavement. (10 Marks)
 - b. Determine the warping stress at corner, interior and edge regions of a cement concrete pavement of thickness 200mm, contraction joint spacing of 5m and longitudinal joint spacing of 4.0m on a runway. The E value of concrete is $0.3 \times 10^5 \text{N/mm}^2$ and K value of subgrade = 0.15 N/mm^2 . Assume the temperature differential as 17°C. Take $\alpha = 10 \times 10^{-6}$ /°C, $\mu = 0.15$ (use chart 3). Assume radius of contact area of load as 150mm. (10 Marks)
- 6 a. Explain in detail with neat sketches: i) Expansion joint; ii) Contraction joint. (10 Marks)
 - b. Design the pavement slab thickness by IRC:58-2002 method, using the following data:


Modulus of subgrade reaction = 8kg/cm³
Present traffic intensity = 1000 CVD
Design wheel load = 5100 kg
Radius of contact area = 15 cm
Trial design thickness = 25 cm


Temperature differential = 17.6°C

Use chart 4 and chart 5.

(10 Marks)

- 7 a. What is the principle involved in overlay design by Benkelman deflection studies? What steps are to be carried out in the study after marking deflection observation point? (08 Marks)
 - b. Explain any six types of flexible pavement failures. (06 Marks)
 - c. Briefly explain the various maintenance works of bituminous surfaces. (06 Marks)
- 8 a. Briefly explain the mud pumping phenomenon in concrete roads. (06 Marks)
 - b. What are the factors considered in thickness determination of airport pavement? Briefly explain LCN method of rigid airport pavement design. (08 Marks)
 - c. List the methods available for functional evaluation of pavement. Briefly explain any one method. (06 Marks)

3 of 3