PPR Calama

		and admand		
USN	. [1	5CS32	
	L	Third Semester B.E. Degree Examination, Dec.2016/Jan.2017		
Analog and Digital Electronics				
Time: 3 hrs. Max. Marks: 80				
Note: Answer FIVE full questions, choosing one full question from each module.				
Module-1				
1	a.	Explain the working of N - channel DE - MOSFET, with the help of neat diagram.	2 Marks)	
	b.	· · · · · · · · · · · · · · · · · · ·	8 Marks) 6 Marks)	
	c.	How CMOS can be used as inverting switch? (02)	2 Marks)	
	OR			
2	a.	Design a voltage divider bias network using a DEMOSFET with supply voltage V_{DI} $I_{DSS} = 10$ mA and $V_P = 5$ V to have a quiescent drain current of 5mA and gate voltage		
		(Assume the drain resistor R_D to be four times the source resistor R_S and $R_2 = 1k\Omega$).	V OL 111	
	i.		Marks)	
	υ.	Explain the performance parameters of Op-amp. (0)	3 Marks)	
	Module-2			
3	a.	Minimize the following Boolean function using K – map method $f(a,b,c,d) = \sum_{i=1}^{n} (5,6,7,12,12) + \sum_{i=1}^{n} (4,0,14,15)$	Marka	
	h.	$f(a, b, c, d) = \Sigma m (5, 6, 7, 12, 13) + \Sigma d (4, 9, 14, 15).$ (00 Apply Quine Mc – Clusky method to find the essential prime implicants for the	6 Marks) Boolean	
	٠.) Marks)	
		OR		
4	a.	A digital system is to be designed in which the month of the year is given as input is	four bit	
		form. The month January is represented as '0000', February as '0001' and so on. The	output	
		of the system should be '1' corresponding to the input of the month containing 31 da		
		otherwise it is '0'. Consider the excess number in the input beyond '1011' as don't conditions for the system of four variables. (ABCD) find the following:	are	
		i) Write truth table and Boolean expression in SOP Σm and POS ΠM form.		
		ii) Using K – map simplify the Boolean expression of canonical mini term form.		
			Marks)	
	b.	What is Hazard? List the type of hazards and explain static 0 and static – 1 hazard.	ó Marks)	
		Note Andre 2		
5	a.	Module-3 Implement the following function using 8:1 multiplexer $f(a, b, c, d) = \sum m(0, 1, 5, 6, d)$	8. 10.	
J	u.		Marks)	
	b.	Realize the following function using 3:8 decoder		
			Marks)	
	c.	What is Magnitude Comparator? Explain 1 bit magnitude comparator. (0)	Marks)	
_		OR	NAT ! .	
6	a. b.		3 Marks) 1 Marks)	
	••		,	

(04 Marks) Write VHDL code for given circuit. Fig.Q6(c) Module-4 What is Race around condition? With block diagram and truth table, explain the working of (10 Marks) JK master - slave flip - flop. b. Give State transition diagram and characteristics equation for JK and SR Flip Flop.(06 Marks) OR (04 Marks) With neat diagram, explain Ring counter. What is Shift Register? With neat diagram, explain 4 bit parallel in serial out shift resisters. b. (08 Marks) (04 Marks) Compare Synchronous and Asynchronous counter. Module-5 Define Counter. Design A synchronous counter for the sequence $0 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 6 \rightarrow 0 \rightarrow 4$ (12 Marks) using JK Flip - Flop. (04 Marks) Explain Digital clock, with neat diagram. Explain the Binary ladder with Digital input of 1000. (06 Marks) 10 (10 Marks) b. Explain 2 bit simultaneous A/D converter.

8

9

* * * * *