Any revealing of identification, appeal to evaluator and l or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

USN

Fourth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Field Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. State and explain Coulomb's law in vector form. (05 Marks)
 - b. Two point charges $Q_1 = -0.3$ nC at [25, -30, -15], and $Q_2 = 0.5$ nC at [-10, 8, 12] present in free space determine $\stackrel{\rightarrow}{E}$ at P(15, 20, 50). (05 Marks)
 - c. Given $D = 4y^2 \hat{a}_x + 3x^2 y \hat{a}_y + 15 \hat{a}_z C/m^2$ verify both sides of Divergence theorem and evaluate charge enclosed within region 0 < x, y, z < 2. (10 Marks)
- 2 a. Find out the work done in moving a charge ρ = a to ρ = b along with radial direction due to infinite line charge. (06 Marks)
 - b. Given a potential $V = 3x^2 + 4y^2(V)$, find the energy stored in volume described by $0 \le x \le 1$ m, $0 \le y \le 1$ m and $0 \le z \le 1$ m. (06 Marks)
 - c. Obtain the boundary condition between conductor and free space. (08 Marks)
- 3 a. State and prove uniqueness theorem. (08 Marks)
 - b. In spherical co-ordinates V = 0 at r = 0.1 m and V = 100 V at r = 2m. Assuming free space between the concentric spherical shell find E and D. (06 Marks)
 - Use Laplace equation to find the capacitance between two plate of a parallel plate capacitor, separated by distance 'd" and maintained at potential "o" and "V₀" respectively. (06 Marks)
- 4 a. Find the magnetic field intensity and flux density at the centre, of a circular wire carrying a current 'I' and of radius 'a' by using Biot Savart's law. (06 Marks)
 - b. In cylindrical co-ordinates a magnetic field is given as $\overrightarrow{H} = [4\rho 2\rho^2] \hat{a}_{\phi} A/m \ 0 \le \rho \le 1$
 - i) Find the current density as a function of ρ within the cylinder
 - ii) Find the total current that passes through the surface z=0 and $0 \le \rho \le 1m$ in

âz direction. (06 Marks)

c. Define vector magnetic potential and prove that $A = \frac{\mu_0}{4\pi} \int_v^{\frac{J}{r}} dv$. (08 Marks)

PART - R

- 5 a. Derive an expression for the force between two differential current elements. (06 Marks)
 - b. The z=0 marks the boundary between two magnetic materials. For region 1, (z>0), $\mu_1=4$ μH and region 2, (z<0), $\mu_2=6$ μH . The surface current density at the boundary is given as $\vec{K}=12\hat{a}_y\,A/m$, find \vec{H}_2 if $\vec{H}_1=40\hat{a}_x+50\hat{a}_y+12\hat{a}_z\,kA/m$. (06 Marks)
 - c. Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical type of length 60 cm and of diameter 6 cm. Given that the medium is air. Derive the expression used.
 (08 Marks)

10EE44

- 6 a. List Maxwell's equations for time varying field in point and integral form. (06 Marks)
 - Starting from Ampere's circuital law derive an expression for displacement current density for time varying fields. (06 Marks)
 - c. What is retarded potential? Obtain an expression for retarded potential V and A. (08 Marks)
- 7 a. State and prove Poynting's theorem. (10 Marks)
 - b. With respect to wave propagation in good conductors, describe what is skin effect, derive an expression for the depth of penetration. If $\sigma = 58 \times 10^6$ T/m at frequency 10 MHz determine depth of penetration. (10 Marks)
- 8 a. The plane x=0 is the boundary between two perfect dielectric. For x<0, $\mu_1=\mu_0$, $\epsilon_1=3.6\pi$ pf/m and $\sigma_1=0$; for x>0, $\mu_2=\mu_0$, $\epsilon_2=14.4\pi$ pf/m and $\sigma_2=0$.
 - If $E_i^+ = 60\cos(10^9 t \beta_1 x)V/m$ find:
 - i) Incident magnetic field Hi
 - ii) Reflected electric and magnetic field E_r and H_r
 - iii) Transmitted electric and magnetic field E_t and H_t (10 Marks)
 - b. What is a standing wave? Derive an expression for standing wave ratio. (10 Marks)

* * * * *