Fifth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Digital Signal Processing

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, selecting atleast TWO questions from each part.

2. Use of normalized Butterworth and Chebyshev tables are not allowed.

PART - A

- a. Find the Z-transform of the sequence x(n) = {0.5, 0, 0.5, 0}. Using Z-transform result find its DFT. (08 Marks)
 - b. Find the 5-point DFT of $x(n) = \{1, 1, 1\}$.

(05 Marks)

c. Find IDFT for the sequence : $x(k) = \{5, 0, (1-j), 0, 1, 0, (1+j), 0\}$. (07 Marks)

2 a. Given the 8-point sequence:

$$x(n) = \begin{cases} 1, & 0 \le n \le 3 \\ 0, & 4 \le n \le 7 \end{cases}$$

compute the DFT of the sequence $x_1(n)$ using properties of DFT:

$$x_1(n) = \begin{cases} 1, & n = 0 \\ 0, & 1 \le n \le 4 \\ 1, & 5 \le n \le 7 \end{cases}$$
 (08 Marks)

b. Let $x(n) = \{1, 2, 3, 4\}$ with $x(k) = \{10, -2 + 2j, -2, -2 - 2j\}$. Find the DFT of $x_1(n) = \{1, 0, 2, 0, 3, 0, 4, 0\}$ using minimum number of operation.

(06 Marks)

c. For the DFT pair shown, compute the values of the boxed quantities using appropriate properties.

(
$$x_0$$
, 3, -4, 0, 2) DFT (5, x_1 , -1.28 -j3.49, x_3 , 8.78 -j1.4). (06 Marks)

- 3 a. Find the output y(n) of a filter whose impulse response is $h(n) = \{1, -2\}$ and input signal $x(n) = \{3, -2, 4, 1, 5, 7, 2, -9\}$ using overlap add method. Use only 5 point circular convolution in your approach. (06 Marks)
 - b. What is the need of FFT? Determine the following for a 128 point FFT computation number of: i) Stages ii) butter files in each stage iii) butter files needed for entire computation iv) total number of complex multiplications v) total number of complex additions.

(05 Marks)

- c. Given sequence $x_1(n) = \{2, 1, 1, 2\}$ and $x_2(n) = \{1, -1, -1, 1\}$ compute the circular convolution $x_1(n) \circledast_N x_2(n)$: for N = 4 use DIT FFT algorithm. (09 Marks)
- 4 a. Determine 8-point DFT of the real sequence $x(n) = \{1, 2, 2, 2, 1, 0, 0, 0\}$. Use DIF-FFT algorithm. (08 Marks)
 - b. What is Geortzel algorithm? obtain DF-II realization of tow pole resonator for computing DFT. (08 Marks)
 - c. What is Chrip-z signal? What are the applications of Chrip-z signal? (04 Marks)

PART - B

5 a. Derive an expression for order and cut-off frequency of Butterworth lowpass filter.

(08 Marks)

- b. Design a Chebyshev analog lowpass filter that has -3dB cut-off frequency of 100 rad/sec and stop band attenuation of 25dB (or) grater for all radian frequencies past 250 rad/sec. Verify the design. (12 Marks)
- 6 a. Realize FIR linear phase filter for 'N' to be even.

(08 Marks)

- b. Obtain the cascade and parallel realizations of: $H(z) = \frac{1 + \frac{1}{4}z^{-1}}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}\right)}.$ (12 Marks)
- 7 a. A low pass filter has the desired frequency response:

$$H_{d}(\omega) = H_{d}(e^{j\omega}) = \begin{cases} e^{-j3\omega} & 0 < \omega < \frac{\pi}{2} \\ 0, & \frac{\pi}{2} < \omega < \pi \end{cases}$$

Determine h(n) based on frequency sampling technique. Take N = 7.

(10 Marks)

b. Design a FIR filter (low pass) with desired frequency response:

$$H_d(e^{j\omega}) = \begin{cases} e^{-j3\omega}, & \frac{-3\pi}{4} \le \omega \le \frac{3\pi}{4} \\ 0, & \frac{3\pi}{4} < |\omega| < \pi \end{cases}$$

The Hamming window with N = 7. Also obtain frequency response.

(10 Marks)

8 a. Design a digital filter H(z) that when used in A/D-H(z)-D/A structures gives an equivalent analog filter with the following specifications.

Passband ripple

 $: \le 3.01 \text{ dB}$

Passband edge

: ≤ 500 Hz

Stopband attenuation

 $: \ge 15 \text{ dB}$

Stopband edge

750 Hz

Sample rate

2 KHz

Use bilinear transformation to design the filter on an analog system function, use Butterworth filter prototype. Also obtain difference equation. (14 Marks)

b. Compare IIR filter with FIR-filters.

(06 Marks)

* * * * *